Skip to content

Commit 3f87342

Browse files
authored
Implement trimatmul and mattrimul. (#531)
1 parent 1b3741c commit 3f87342

File tree

2 files changed

+214
-4
lines changed

2 files changed

+214
-4
lines changed

src/host/linalg.jl

Lines changed: 181 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -359,11 +359,11 @@ function generic_matmatmul!(C::AbstractArray{R}, A::AbstractArray{T}, B::Abstrac
359359

360360
@inbounds if i <= size(A,1) && j <= size(B,2)
361361
z2 = zero(A[i, 1]*B[1, j] + A[i, 1]*B[1, j])
362-
Ctmp = convert(promote_type(R, typeof(z2)), z2)
362+
Cij = convert(promote_type(R, typeof(z2)), z2)
363363
for k in 1:size(A,2)
364-
Ctmp += A[i, k]*B[k, j]
364+
Cij += A[i, k]*B[k, j]
365365
end
366-
C[i,j] = add(Ctmp, C[i,j])
366+
C[i,j] = add(Cij, C[i,j])
367367
end
368368

369369
return
@@ -388,7 +388,184 @@ end
388388
function LinearAlgebra.generic_matmatmul!(C::AbstractGPUVecOrMat, tA, tB, A::AbstractGPUVecOrMat, B::AbstractGPUVecOrMat, a::Number, b::Number)
389389
LinearAlgebra.@stable_muladdmul generic_matmatmul!(C, wrap(A, tA), wrap(B, tB), MulAddMul(a, b))
390390
end
391-
end
391+
end
392+
393+
function generic_trimatmul!(C::AbstractGPUVecOrMat{R}, uploc, isunitc, tfun::Function, A::AbstractGPUMatrix{T}, B::AbstractGPUVecOrMat{S}) where {T,S,R}
394+
if size(A,2) != size(B,1)
395+
throw(DimensionMismatch(lazy"matrix A has dimensions $(size(A)), matrix B has dimensions $(size(B))"))
396+
end
397+
if size(C,1) != size(A,1) || size(C,2) != size(B,2)
398+
throw(DimensionMismatch(lazy"result C has dimensions $(size(C)), needs $((size(A,1),size(B,2)))"))
399+
end
400+
if isempty(A) || isempty(B)
401+
return fill!(C, zero(R))
402+
end
403+
404+
upper = tfun === identity ? uploc == 'U' : uploc != 'U'
405+
unit = isunitc == 'U'
406+
407+
function trimatmul(ctx, C, A, B)
408+
idx = @linearidx C
409+
assume.(size(C) .> 0)
410+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
411+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
412+
413+
@inbounds if i <= l && j <= n
414+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
415+
Cij = convert(promote_type(R, typeof(z2)), z2)
416+
Cij += (unit ? one(Cij) : A[i,i]) * B[i,j]
417+
for k in (upper ? (i + 1) : 1):(upper ? m : (i - 1))
418+
Cij += A[i,k] * B[k,j]
419+
end
420+
C[i,j] += Cij
421+
end
422+
423+
return
424+
end
425+
426+
function trimatmul_t(ctx, C, A, B)
427+
idx = @linearidx C
428+
assume.(size(C) .> 0)
429+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
430+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
431+
432+
@inbounds if i <= l && j <= n
433+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
434+
Cij = convert(promote_type(R, typeof(z2)), z2)
435+
Cij += (unit ? one(Cij) : transpose(A[i,i])) * B[i,j]
436+
for k in (upper ? (i + 1) : 1):(upper ? m : (i - 1))
437+
Cij += transpose(A[k,i]) * B[k,j]
438+
end
439+
C[i,j] += Cij
440+
end
441+
442+
return
443+
end
444+
445+
function trimatmul_a(ctx, C, A, B)
446+
idx = @linearidx C
447+
assume.(size(C) .> 0)
448+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
449+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
450+
451+
@inbounds if i <= l && j <= n
452+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
453+
Cij = convert(promote_type(R, typeof(z2)), z2)
454+
Cij += (unit ? one(Cij) : adjoint(A[i,i])) * B[i,j]
455+
for k in (upper ? (i + 1) : 1):(upper ? m : (i - 1))
456+
Cij += adjoint(A[k,i]) * B[k,j]
457+
end
458+
C[i,j] += Cij
459+
end
460+
461+
return
462+
end
463+
464+
if tfun === identity
465+
gpu_call(trimatmul, C, A, B; name="trimatmul")
466+
elseif tfun == transpose
467+
gpu_call(trimatmul_t, C, A, B; name="trimatmul_t")
468+
elseif tfun === adjoint
469+
gpu_call(trimatmul_a, C, A, B; name="trimatmul_a")
470+
else
471+
error("Not supported")
472+
end
473+
474+
C
475+
end
476+
477+
function generic_mattrimul!(C::AbstractGPUVecOrMat{R}, uploc, isunitc, tfun::Function, A::AbstractGPUMatrix{T}, B::AbstractGPUVecOrMat{S}) where {T,S,R}
478+
if size(A,2) != size(B,1)
479+
throw(DimensionMismatch(lazy"matrix A has dimensions $(size(A)), matrix B has dimensions $(size(B))"))
480+
end
481+
if size(C,1) != size(A,1) || size(C,2) != size(B,2)
482+
throw(DimensionMismatch(lazy"result C has dimensions $(size(C)), needs $((size(A,1),size(B,2)))"))
483+
end
484+
if isempty(A) || isempty(B)
485+
return fill!(C, zero(R))
486+
end
487+
488+
upper = tfun === identity ? uploc == 'U' : uploc != 'U'
489+
unit = isunitc == 'U'
490+
491+
function mattrimul(ctx, C, A, B)
492+
idx = @linearidx C
493+
assume.(size(C) .> 0)
494+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
495+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
496+
497+
@inbounds if i <= l && j <= n
498+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
499+
Cij = convert(promote_type(R, typeof(z2)), z2)
500+
Cij += A[i,j] * (unit ? one(Cij) : B[j,j])
501+
for k in (upper ? 1 : (j + 1)):(upper ? (j - 1) : m)
502+
Cij += A[i,k] * B[k,j]
503+
end
504+
C[i,j] += Cij
505+
end
506+
507+
return
508+
end
509+
510+
function mattrimul_t(ctx, C, A, B)
511+
idx = @linearidx C
512+
assume.(size(C) .> 0)
513+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
514+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
515+
516+
@inbounds if i <= l && j <= n
517+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
518+
Cij = convert(promote_type(R, typeof(z2)), z2)
519+
Cij += A[i,j] * (unit ? one(Cij) : transpose(B[j,j]))
520+
for k in (upper ? 1 : (j + 1) ):(upper ? (j - 1) : m)
521+
Cij += A[i,k] * transpose(B[j,k])
522+
end
523+
C[i,j] += Cij
524+
end
525+
526+
return
527+
end
528+
529+
function mattrimul_a(ctx, C, A, B)
530+
idx = @linearidx C
531+
assume.(size(C) .> 0)
532+
i, j = @inbounds Tuple(CartesianIndices(C)[idx])..., 1
533+
l, m, n = size(A, 1), size(B, 1), size(B, 2)
534+
535+
@inbounds if i <= l && j <= n
536+
z2 = zero(A[i,1] * B[1,j] + A[i,1] * B[1,j])
537+
Cij = convert(promote_type(R, typeof(z2)), z2)
538+
Cij += A[i,j] * (unit ? one(Cij) : adjoint(B[j,j]))
539+
for k in (upper ? 1 : (j + 1)):(upper ? (j - 1) : m)
540+
Cij += A[i,k] * adjoint(B[j,k])
541+
end
542+
C[i,j] += Cij
543+
end
544+
545+
return
546+
end
547+
548+
if tfun === identity
549+
gpu_call(mattrimul, C, A, B; name="mattrimul")
550+
elseif tfun == transpose
551+
gpu_call(mattrimul_t, C, A, B; name="mattrimul_t")
552+
elseif tfun === adjoint
553+
gpu_call(mattrimul_a, C, A, B; name="mattrimul_a")
554+
else
555+
error("Not supported")
556+
end
557+
558+
C
559+
end
560+
561+
if VERSION >= v"1.10-"
562+
function LinearAlgebra.generic_trimatmul!(C::AbstractGPUVecOrMat, uploc, isunitc, tfun::Function, A::AbstractGPUMatrix, B::AbstractGPUVecOrMat)
563+
generic_trimatmul!(C, uploc, isunitc, tfun, A, B)
564+
end
565+
function LinearAlgebra.generic_mattrimul!(C::AbstractGPUMatrix, uploc, isunitc, tfun::Function, A::AbstractGPUMatrix, B::AbstractGPUMatrix)
566+
generic_mattrimul!(C, uploc, isunitc, tfun, A, B)
567+
end
568+
end
392569

393570
if VERSION < v"1.10.0-DEV.1365"
394571
# catch other functions that are called by LinearAlgebra's mul!

test/testsuite/linalg.jl

Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -132,6 +132,39 @@
132132
@test istriu(A) == istriu(B)
133133
end
134134
end
135+
136+
if VERSION >= v"1.10-"
137+
@testset "mul! + Triangular" begin
138+
@testset "trimatmul! ($TR x $T, $f)" for T in (Float32, ComplexF32), TR in (UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular), f in (identity, transpose, adjoint)
139+
n = 128
140+
A = AT(rand(T, n,n))
141+
b = AT(rand(T, n))
142+
Ct = AT(zeros(T, n))
143+
C = zeros(T, n)
144+
mul!(Ct, f(TR(A)), b)
145+
mul!(C, f(TR(collect(A))), collect(b))
146+
@test collect(Ct) C
147+
148+
B = AT(rand(T, n, n))
149+
Ct = AT(zeros(T, n, n))
150+
C = zeros(T, n, n)
151+
mul!(Ct, f(TR(A)), B)
152+
mul!(C, f(TR(collect(A))), collect(B))
153+
@test collect(Ct) C
154+
end
155+
156+
@testset "mattrimul ($TR x $T, $f)" for T in (Float32, ComplexF32), TR in (UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular), f in (identity, transpose, adjoint)
157+
n = 128
158+
A = AT(rand(T, n,n))
159+
B = AT(rand(T, n, n))
160+
Ct = AT(zeros(T, n, n))
161+
C = zeros(T, n, n)
162+
mul!(Ct, A, f(TR(B)))
163+
mul!(C, collect(A), f(TR(collect(B))))
164+
@test collect(Ct) C
165+
end
166+
end
167+
end
135168
end
136169

137170
@testset "diagonal" begin

0 commit comments

Comments
 (0)