Skip to content

Commit 233b917

Browse files
author
Benedikt Brantner Admin
committed
Fixed all docstrings that were broken after adjustment to ANN v0.6.
1 parent 7e999b5 commit 233b917

File tree

6 files changed

+13
-10
lines changed

6 files changed

+13
-10
lines changed

docs/src/double_derivative.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
```@example jacobian_gradient
1919
using AbstractNeuralNetworks
2020
using SymbolicNeuralNetworks
21-
using SymbolicNeuralNetworks: Jacobian, Gradient, derivative, params
21+
using SymbolicNeuralNetworks: Jacobian, Gradient, derivative
2222
using Latexify: latexify
2323
2424
c = Chain(Dense(2, 1, tanh; use_bias = false))

src/build_function/build_function.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ built_function([1. 2.; 3. 4.], params(nn), 1)
5454
# output
5555
5656
1-element Vector{Float64}:
57-
-0.9999967113439513
57+
0.9912108161055604
5858
```
5959
6060
Note that we have to supply an extra argument (index) to `_build_nn_function` that we do not have to supply to [`build_nn_function`](@ref).

src/build_function/build_function_arrays.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,8 @@ funcs_evaluated = funcs(input, params(nn))
2222
# output
2323
2424
2-element Vector{NamedTuple}:
25-
(a = [-0.9999386280616135], b = [0.9998772598897417])
26-
(c = [-0.9998158954841537],)
25+
(a = [0.985678060655224], b = [0.9715612392570434])
26+
(c = [0.9576465981186686],)
2727
```
2828
"""
2929
function build_nn_function(eqs::AbstractArray{<:Union{NamedTuple, NeuralNetworkParameters}}, sparams::NeuralNetworkParameters, sinput::Symbolics.Arr...)
@@ -58,7 +58,7 @@ funcs_evaluated = funcs(input, params(nn))
5858
5959
# output
6060
61-
(a = [-0.9999386280616135], b = [0.9998772598897417])
61+
(a = [0.985678060655224], b = [0.9715612392570434])
6262
```
6363
6464
# Implementation
Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,7 @@
11
function _latexraw(args::AbstractNeuralNetworks.GenericActivation; kwargs...)
22
_latexraw(args.σ; kwargs...)
3+
end
4+
5+
function _latexraw(args::AbstractNeuralNetworks.TanhActivation; kwargs...)
6+
_latexraw(tanh; kwargs...)
37
end

src/derivatives/jacobian.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ We can use `Jacobian` together with [`build_nn_function`](@ref):
4545
```jldoctest
4646
using SymbolicNeuralNetworks
4747
using SymbolicNeuralNetworks: Jacobian, derivative
48-
using AbstractNeuralNetworks: Dense, Chain, NeuralNetwork
48+
using AbstractNeuralNetworks: Dense, Chain, NeuralNetwork, params
4949
using Symbolics
5050
import Random
5151

src/derivatives/pullback.jl

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -52,16 +52,15 @@ c = Chain(Dense(2, 1, tanh))
5252
nn = NeuralNetwork(c)
5353
snn = SymbolicNeuralNetwork(nn)
5454
loss = FeedForwardLoss()
55-
pb = SymbolicPullback(nn, loss)
56-
ps = AbstractNeuralNetworks.params(NeuralNetwork(c))
55+
pb = SymbolicPullback(snn, loss)
5756
input_output = (rand(2), rand(1))
5857
loss_and_pullback = pb(params(nn), nn.model, input_output)
5958
# note that we apply the second argument to another input `1`
6059
pb_values = loss_and_pullback[2](1)
6160
6261
@variables soutput[1:SymbolicNeuralNetworks.output_dimension(nn.model)]
63-
symbolic_pullbacks = SymbolicNeuralNetworks.symbolic_pullback(loss(nn.model, SymbolicNeuralNetworks.params(nn), nn.input, soutput), nn)
64-
pv_values2 = build_nn_function(symbolic_pullbacks, SymbolicNeuralNetworks.params(nn), nn.input, soutput)(input_output[1], input_output[2], ps)
62+
symbolic_pullbacks = SymbolicNeuralNetworks.symbolic_pullback(loss(nn.model, params(snn), snn.input, soutput), snn)
63+
pb_values2 = build_nn_function(symbolic_pullbacks, params(snn), snn.input, soutput)(input_output[1], input_output[2], params(nn))
6564
6665
pb_values == (pb_values2 |> SymbolicNeuralNetworks._get_contents |> SymbolicNeuralNetworks._get_params)
6766

0 commit comments

Comments
 (0)