|
| 1 | +#= |
| 2 | +Very heavily inspired by Calculus.jl, but with an emphasis on performance and DiffEq API convenience. |
| 3 | +=# |
| 4 | + |
| 5 | +#= |
| 6 | +Compute the finite difference interval epsilon. |
| 7 | +Reference: Numerical Recipes, chapter 5.7. |
| 8 | +=# |
| 9 | +@inline function compute_epsilon{T<:Real}(::Type{Val{:forward}}, x::T, eps_sqrt::T=sqrt(eps(T))) |
| 10 | + eps_sqrt * max(one(T), abs(x)) |
| 11 | +end |
| 12 | + |
| 13 | +@inline function compute_epsilon{T<:Real}(::Type{Val{:central}}, x::T, eps_cbrt::T=cbrt(eps(T))) |
| 14 | + eps_cbrt * max(one(T), abs(x)) |
| 15 | +end |
| 16 | + |
| 17 | +@inline function compute_epsilon{T<:Complex}(::Type{Val{:complex}}, x::T) |
| 18 | + eps(real(x)) |
| 19 | +end |
| 20 | + |
| 21 | + |
| 22 | +#= |
| 23 | +Compute the derivative df of a real-valued callable f on a collection of points x. |
| 24 | +Generic fallbacks for AbstractArrays that are not StridedArrays. |
| 25 | +=# |
| 26 | +function finite_difference{T<:Real}(f, x::AbstractArray{T}, ::Type{Val{:central}}, ::Union{Void,AbstractArray{T}}=nothing) |
| 27 | + df = zeros(T, size(x)) |
| 28 | + finite_difference!(df, f, x, Val{:central}) |
| 29 | +end |
| 30 | + |
| 31 | +function finite_difference!{T<:Real}(df::AbstractArray{T}, f, x::AbstractArray{T}, ::Type{Val{:central}}, ::Union{Void,AbstractArray{T}}=nothing) |
| 32 | + eps_sqrt = sqrt(eps(T)) |
| 33 | + epsilon = compute_epsilon.(Val{:central}, x, eps_sqrt) |
| 34 | + @. df = (f(x+epsilon) - f(x-epsilon)) / (2 * epsilon) |
| 35 | +end |
| 36 | + |
| 37 | +function finite_difference{T<:Real}(f, x::AbstractArray{T}, ::Type{Val{:forward}}, f_x::AbstractArray{T}=f.(x)) |
| 38 | + df = zeros(T, size(x)) |
| 39 | + finite_difference!(df, f, x, Val{:forward}, f_x) |
| 40 | +end |
| 41 | + |
| 42 | +function finite_difference!{T<:Real}(df::AbstractArray{T}, f, x::AbstractArray{T}, ::Type{Val{:forward}}, f_x::AbstractArray{T}=f.(x)) |
| 43 | + eps_cbrt = cbrt(eps(T)) |
| 44 | + epsilon = compute_epsilon.(Val{:forward}, x, eps_cbrt) |
| 45 | + @. df = (f(x+epsilon) - f_x) / epsilon |
| 46 | +end |
| 47 | + |
| 48 | + |
| 49 | +#= |
| 50 | +Compute the derivative df of a real-valued callable f on a collection of points x. |
| 51 | +Optimized implementations for StridedArrays. |
| 52 | +=# |
| 53 | +function finite_difference{T<:Real}(f, x::StridedArray{T}, ::Type{Val{:central}}, ::Union{Void,StridedArray{T}}=nothing) |
| 54 | + df = zeros(T, size(x)) |
| 55 | + finite_difference!(df, f, x, Val{:central}) |
| 56 | +end |
| 57 | + |
| 58 | +function finite_difference!{T<:Real}(df::StridedArray{T}, f, x::StridedArray{T}, ::Type{Val{:central}}, ::Union{Void,StridedArray{T}}=nothing) |
| 59 | + eps_sqrt = sqrt(eps(T)) |
| 60 | + @inbounds for i in 1 : length(x) |
| 61 | + epsilon = compute_epsilon(Val{:central}, x[i], eps_sqrt) |
| 62 | + epsilon_double_inv = one(T) / (2*epsilon) |
| 63 | + x_plus, x_minus = x[i]+epsilon, x[i]-epsilon |
| 64 | + df[i] = (f(x_plus) - f(x_minus)) * epsilon_double_inv |
| 65 | + end |
| 66 | + df |
| 67 | +end |
| 68 | + |
| 69 | +function finite_difference{T<:Real}(f, x::StridedArray{T}, ::Type{Val{:forward}}, fx::Union{Void,StridedArray{T}}) |
| 70 | + df = zeros(T, size(x)) |
| 71 | + if typeof(fx) == Void |
| 72 | + finite_difference!(df, f, x, Val{:forward}) |
| 73 | + else |
| 74 | + finite_difference!(df, f, x, Val{:forward}, fx) |
| 75 | + end |
| 76 | + df |
| 77 | +end |
| 78 | + |
| 79 | +function finite_difference!{T<:Real}(df::StridedArray{T}, f, x::StridedArray{T}, ::Type{Val{:forward}}) |
| 80 | + eps_cbrt = cbrt(eps(T)) |
| 81 | + @fastmath @inbounds for i in 1 : length(x) |
| 82 | + epsilon = compute_epsilon(Val{:forward}, x[i], eps_cbrt) |
| 83 | + epsilon_inv = one(T) / epsilon |
| 84 | + x_plus = x[i] + epsilon |
| 85 | + df[i] = (f(x_plus) - f(x[i])) * epsilon_inv |
| 86 | + end |
| 87 | + df |
| 88 | +end |
| 89 | + |
| 90 | +function finite_difference!{T<:Real}(df::StridedArray{T}, f, x::StridedArray{T}, ::Type{Val{:forward}}, fx::StridedArray{T}) |
| 91 | + eps_cbrt = cbrt(eps(T)) |
| 92 | + @fastmath @inbounds for i in 1 : length(x) |
| 93 | + epsilon = compute_epsilon(Val{:forward}, x[i], eps_cbrt) |
| 94 | + epsilon_inv = one(T) / epsilon |
| 95 | + x_plus = x[i] + epsilon |
| 96 | + df[i] = (f(x_plus) - fx[i]) * epsilon_inv |
| 97 | + end |
| 98 | + df |
| 99 | +end |
| 100 | + |
| 101 | +#= |
| 102 | +Compute the derivative df of a real-valued callable f on a collection of points x. |
| 103 | +Single point implementations. |
| 104 | +=# |
| 105 | +function finite_difference{T<:Real}(f, x::T, t::DataType, f_x::Union{Void,T}=nothing) |
| 106 | + epsilon = compute_epsilon(t, x) |
| 107 | + finite_difference_kernel(f, x, t, epsilon, f_x) |
| 108 | +end |
| 109 | + |
| 110 | +@inline function finite_difference_kernel{T<:Real}(f, x::T, ::Type{Val{:forward}}, epsilon::T, f_x::Union{Void,T}) |
| 111 | + if typeof(f_x) == Void |
| 112 | + return (f(x+epsilon) - f(x)) / epsilon |
| 113 | + else |
| 114 | + return (f(x+epsilon) - f_x) / epsilon |
| 115 | + end |
| 116 | +end |
| 117 | + |
| 118 | +@inline function finite_difference_kernel{T<:Real}(f, x::T, ::Type{Val{:central}}, epsilon::T, ::Union{Void,T}=nothing) |
| 119 | + (f(x+epsilon) - f(x-epsilon)) / (2 * epsilon) |
| 120 | +end |
| 121 | + |
| 122 | +# TODO: derivatives for complex-valued callables |
| 123 | + |
| 124 | + |
| 125 | +#= |
| 126 | +Compute the Jacobian matrix of a real-valued callable f. |
| 127 | +=# |
| 128 | +# TODO |
0 commit comments