@@ -116,7 +116,7 @@ \section{Optical Constructions}
116
116
on the representative - see Riley for details).
117
117
\end {definition }
118
118
119
- This definition makes maniffest the combination of co- and contravariant data.
119
+ This definition makes manifest the combination of co- and contravariant data.
120
120
For a representative $ \langle l | r \rangle $ , $ l$ varies covariantly while $ r$
121
121
varies contravariantly. We additionally have a `` memory" or `` residual" object $ M$ .
122
122
This object is not uniquely determined and in fact we shall make good use of that
@@ -564,13 +564,13 @@ \subsubsection{Coproduct Structure}
564
564
Given our utter disappointment with the product structure, can we have any
565
565
hope to lift the co-product structure. Yes, we do! First we construct the
566
566
co-product itself. For two optics $ \langle l_1 | r_1 \rangle : (A, A') \to (B, B')$
567
- with residual $ M_1 $ and $ \langle l_2 | r_2 \rangle : (C, D ') \to (D, D')$ with residual $ M_2 $ ,
567
+ with residual $ M_1 $ and $ \langle l_2 | r_2 \rangle : (C, C ') \to (D, D')$ with residual $ M_2 $ ,
568
568
we construct a new optic $ \langle l_{12} | r_{12} \rangle $ where
569
569
570
570
\begin {equation }
571
571
\begin {split }
572
- l_{12} = (l_1 \oplus l_2) \bbsemi \leftrightarrow _{oplus} \\
573
- r_{12} = \leftrightarrow _{oplus}^{-1} \bbsemi (r_1 \oplus r_2)
572
+ l_{12} = (l_1 \oplus l_2) \bbsemi \leftrightarrow _{\ oplus } \\
573
+ r_{12} = \leftrightarrow _{\ oplus }^{-1} \bbsemi (r_1 \oplus r_2)
574
574
\end {split }
575
575
\end {equation }
576
576
@@ -881,9 +881,9 @@ \subsubsection{Copy}
881
881
\end {snippet }
882
882
883
883
However, note that while this is a valid definition under our definition of
884
- an optic functor, applying $ textbf{\euro {}}$ now leads to accumulation order
884
+ an optic functor, applying $ \ textbf {\euro {}}$ now leads to accumulation order
885
885
dependence (the same happens in the variant where cloning is done once per value).
886
- As a result, $ textbf{\euro {}}$ would no longer preserve standard SSA invariants.
886
+ As a result, $ \ textbf {\euro {}}$ would no longer preserve standard SSA invariants.
887
887
This is legal according to our definition, but it can be convenient to be able to
888
888
arbitrarily permute SSA transforms and optic functors. Thus, we would generally
889
889
only ever choose one of the first two definitions.
0 commit comments