|
| 1 | +""" |
| 2 | +Subtypes of `AbstractRule` are types which represent the primitive derivative |
| 3 | +propagation "rules" that can be composed to implement forward- and reverse-mode |
| 4 | +automatic differentiation. |
| 5 | +
|
| 6 | +More specifically, a `rule::AbstractRule` is a callable Julia object generally |
| 7 | +obtained via calling [`frule`](@ref) or [`rrule`](@ref). Such rules accept |
| 8 | +differential values as input, evaluate the chain rule using internally stored/ |
| 9 | +computed partial derivatives to produce a single differential value, then |
| 10 | +return that calculated differential value. |
| 11 | +
|
| 12 | +For example: |
| 13 | +
|
| 14 | +```jldoctest |
| 15 | +julia> using ChainRulesCore: frule, rrule, AbstractRule |
| 16 | +
|
| 17 | +julia> x, y = rand(2); |
| 18 | +
|
| 19 | +julia> h, dh = frule(hypot, x, y); |
| 20 | +
|
| 21 | +julia> h == hypot(x, y) |
| 22 | +true |
| 23 | +
|
| 24 | +julia> isa(dh, AbstractRule) |
| 25 | +true |
| 26 | +
|
| 27 | +julia> Δx, Δy = rand(2); |
| 28 | +
|
| 29 | +julia> dh(Δx, Δy) == ((x / h) * Δx + (y / h) * Δy) |
| 30 | +true |
| 31 | +
|
| 32 | +julia> h, (dx, dy) = rrule(hypot, x, y); |
| 33 | +
|
| 34 | +julia> h == hypot(x, y) |
| 35 | +true |
| 36 | +
|
| 37 | +julia> isa(dx, AbstractRule) && isa(dy, AbstractRule) |
| 38 | +true |
| 39 | +
|
| 40 | +julia> Δh = rand(); |
| 41 | +
|
| 42 | +julia> dx(Δh) == (x / h) * Δh |
| 43 | +true |
| 44 | +
|
| 45 | +julia> dy(Δh) == (y / h) * Δh |
| 46 | +true |
| 47 | +``` |
| 48 | +
|
| 49 | +See also: [`frule`](@ref), [`rrule`](@ref), [`Rule`](@ref), [`DNERule`](@ref), [`WirtingerRule`](@ref) |
| 50 | +""" |
| 51 | +abstract type AbstractRule end |
| 52 | + |
| 53 | +# this ensures that consumers don't have to special-case rule destructuring |
| 54 | +Base.iterate(rule::AbstractRule) = (rule, nothing) |
| 55 | +Base.iterate(::AbstractRule, ::Any) = nothing |
| 56 | + |
| 57 | +# This ensures we don't need to check whether the result of `rrule`/`frule` is a tuple |
| 58 | +# in order to get the `i`th rule (assuming it's 1) |
| 59 | +Base.getindex(rule::AbstractRule, i::Integer) = i == 1 ? rule : throw(BoundsError()) |
| 60 | + |
| 61 | +""" |
| 62 | + accumulate(Δ, rule::AbstractRule, args...) |
| 63 | +
|
| 64 | +Return `Δ + rule(args...)` evaluated in a manner that supports ChainRulesCore' |
| 65 | +various `AbstractDifferential` types. |
| 66 | +
|
| 67 | +This method intended to be customizable for specific rules/input types. For |
| 68 | +example, here is pseudocode to overload `accumulate` w.r.t. a specific forward |
| 69 | +differentiation rule for a given function `f`: |
| 70 | +
|
| 71 | +``` |
| 72 | +df(x) = # forward differentiation primitive implementation |
| 73 | +
|
| 74 | +frule(::typeof(f), x) = (f(x), Rule(df)) |
| 75 | +
|
| 76 | +accumulate(Δ, rule::Rule{typeof(df)}, x) = # customized `accumulate` implementation |
| 77 | +``` |
| 78 | +
|
| 79 | +See also: [`accumulate!`](@ref), [`store!`](@ref), [`AbstractRule`](@ref) |
| 80 | +""" |
| 81 | +accumulate(Δ, rule::AbstractRule, args...) = add(Δ, rule(args...)) |
| 82 | + |
| 83 | +""" |
| 84 | + accumulate!(Δ, rule::AbstractRule, args...) |
| 85 | +
|
| 86 | +Similar to [`accumulate`](@ref), but compute `Δ + rule(args...)` in-place, |
| 87 | +storing the result in `Δ`. |
| 88 | +
|
| 89 | +Note that this function internally calls `Base.Broadcast.materialize!(Δ, ...)`. |
| 90 | +
|
| 91 | +See also: [`accumulate`](@ref), [`store!`](@ref), [`AbstractRule`](@ref) |
| 92 | +""" |
| 93 | +function accumulate!(Δ, rule::AbstractRule, args...) |
| 94 | + return materialize!(Δ, broadcastable(add(cast(Δ), rule(args...)))) |
| 95 | +end |
| 96 | + |
| 97 | +accumulate!(Δ::Number, rule::AbstractRule, args...) = accumulate(Δ, rule, args...) |
| 98 | + |
| 99 | +""" |
| 100 | + store!(Δ, rule::AbstractRule, args...) |
| 101 | +
|
| 102 | +Compute `rule(args...)` and store the result in `Δ`, potentially avoiding |
| 103 | +intermediate temporary allocations that might be necessary for alternative |
| 104 | +approaches (e.g. `copyto!(Δ, extern(rule(args...)))`) |
| 105 | +
|
| 106 | +Note that this function internally calls `Base.Broadcast.materialize!(Δ, ...)`. |
| 107 | +
|
| 108 | +Like [`accumulate`](@ref) and [`accumulate!`](@ref), this function is intended |
| 109 | +to be customizable for specific rules/input types. |
| 110 | +
|
| 111 | +See also: [`accumulate`](@ref), [`accumulate!`](@ref), [`AbstractRule`](@ref) |
| 112 | +""" |
| 113 | +store!(Δ, rule::AbstractRule, args...) = materialize!(Δ, broadcastable(rule(args...))) |
| 114 | + |
| 115 | +##### |
| 116 | +##### `Rule` |
| 117 | +##### |
| 118 | + |
| 119 | +Cassette.@context RuleContext |
| 120 | + |
| 121 | +const RULE_CONTEXT = Cassette.disablehooks(RuleContext()) |
| 122 | + |
| 123 | +Cassette.overdub(::RuleContext, ::typeof(+), a, b) = add(a, b) |
| 124 | +Cassette.overdub(::RuleContext, ::typeof(*), a, b) = mul(a, b) |
| 125 | + |
| 126 | +Cassette.overdub(::RuleContext, ::typeof(add), a, b) = add(a, b) |
| 127 | +Cassette.overdub(::RuleContext, ::typeof(mul), a, b) = mul(a, b) |
| 128 | + |
| 129 | +""" |
| 130 | + Rule(propation_function[, updating_function]) |
| 131 | +
|
| 132 | +Return a `Rule` that wraps the given `propation_function`. It is assumed that |
| 133 | +`propation_function` is a callable object whose arguments are differential |
| 134 | +values, and whose output is a single differential value calculated by applying |
| 135 | +internally stored/computed partial derivatives to the input differential |
| 136 | +values. |
| 137 | +
|
| 138 | +If an updating function is provided, it is assumed to have the signature `u(Δ, xs...)` |
| 139 | +and to store the result of the propagation function applied to the arguments `xs` into |
| 140 | +`Δ` in-place, returning `Δ`. |
| 141 | +
|
| 142 | +For example: |
| 143 | +
|
| 144 | +``` |
| 145 | +frule(::typeof(*), x, y) = x * y, Rule((Δx, Δy) -> Δx * y + x * Δy) |
| 146 | +
|
| 147 | +rrule(::typeof(*), x, y) = x * y, (Rule(ΔΩ -> ΔΩ * y'), Rule(ΔΩ -> x' * ΔΩ)) |
| 148 | +``` |
| 149 | +
|
| 150 | +See also: [`frule`](@ref), [`rrule`](@ref), [`accumulate`](@ref), [`accumulate!`](@ref), [`store!`](@ref) |
| 151 | +""" |
| 152 | +struct Rule{F,U<:Union{Function,Nothing}} <: AbstractRule |
| 153 | + f::F |
| 154 | + u::U |
| 155 | +end |
| 156 | + |
| 157 | +# NOTE: Using `Core.Typeof` instead of `typeof` here so that if we define a rule for some |
| 158 | +# constructor based on a `UnionAll`, we get `Rule{Type{Thing}}` instead of `Rule{UnionAll}` |
| 159 | +Rule(f) = Rule{Core.Typeof(f),Nothing}(f, nothing) |
| 160 | + |
| 161 | +(rule::Rule{F})(args...) where {F} = Cassette.overdub(RULE_CONTEXT, rule.f, args...) |
| 162 | + |
| 163 | +# Specialized accumulation |
| 164 | +# TODO: Does this need to be overdubbed in the rule context? |
| 165 | +accumulate!(Δ, rule::Rule{F,U}, args...) where {F,U<:Function} = rule.u(Δ, args...) |
| 166 | + |
| 167 | +##### |
| 168 | +##### `DNERule` |
| 169 | +##### |
| 170 | + |
| 171 | +""" |
| 172 | + DNERule(args...) |
| 173 | +
|
| 174 | +Construct a `DNERule` object, which is an `AbstractRule` that signifies that the |
| 175 | +current function is not differentiable with respect to a particular parameter. |
| 176 | +**DNE** is an abbreviation for Does Not Exist. |
| 177 | +""" |
| 178 | +struct DNERule <: AbstractRule end |
| 179 | + |
| 180 | +DNERule(args...) = DNE() |
| 181 | + |
| 182 | +##### |
| 183 | +##### `WirtingerRule` |
| 184 | +##### |
| 185 | + |
| 186 | +""" |
| 187 | + WirtingerRule(primal::AbstractRule, conjugate::AbstractRule) |
| 188 | +
|
| 189 | +Construct a `WirtingerRule` object, which is an `AbstractRule` that consists of |
| 190 | +an `AbstractRule` for both the primal derivative ``∂/∂x`` and the conjugate |
| 191 | +derivative ``∂/∂x̅``. If the domain `𝒟` of the function might be real, consider |
| 192 | +calling `AbstractRule(𝒟, primal, conjugate)` instead, to make use of a more |
| 193 | +efficient representation wherever possible. |
| 194 | +""" |
| 195 | +struct WirtingerRule{P<:AbstractRule,C<:AbstractRule} <: AbstractRule |
| 196 | + primal::P |
| 197 | + conjugate::C |
| 198 | +end |
| 199 | + |
| 200 | +function (rule::WirtingerRule)(args...) |
| 201 | + return Wirtinger(rule.primal(args...), rule.conjugate(args...)) |
| 202 | +end |
| 203 | + |
| 204 | +""" |
| 205 | + AbstractRule(𝒟::Type, primal::AbstractRule, conjugate::AbstractRule) |
| 206 | +
|
| 207 | +Return a `Rule` evaluating to `primal(Δ) + conjugate(Δ)` if `𝒟 <: Real`, |
| 208 | +otherwise return `WirtingerRule(P, C)`. |
| 209 | +""" |
| 210 | +function AbstractRule(𝒟::Type, primal::AbstractRule, conjugate::AbstractRule) |
| 211 | + if 𝒟 <: Real || eltype(𝒟) <: Real |
| 212 | + return Rule((args...) -> add(primal(args...), conjugate(args...))) |
| 213 | + else |
| 214 | + return WirtingerRule(primal, conjugate) |
| 215 | + end |
| 216 | +end |
| 217 | + |
0 commit comments