|
12 | 12 | end
|
13 | 13 | @inline LinearAlgebra._chol!(A::StaticMatrix, ::Type{UpperTriangular}) = (cholesky(A).U, 0)
|
14 | 14 |
|
15 |
| - |
16 |
| -@generated function _cholesky(::Size{(1,1)}, A::StaticMatrix) |
17 |
| - @assert size(A) == (1,1) |
18 |
| - |
19 |
| - quote |
20 |
| - $(Expr(:meta, :inline)) |
21 |
| - T = promote_type(typeof(sqrt(one(eltype(A)))), Float32) |
22 |
| - similar_type(A,T)((sqrt(A[1]), )) |
| 15 | +@generated function _cholesky(::Size{S}, A::StaticMatrix{M,M}) where {S,M} |
| 16 | + @assert (M,M) == S |
| 17 | + M > 24 && return :(_cholesky_large(Size{$S}(), A)) |
| 18 | + q = Expr(:block) |
| 19 | + for n ∈ 1:M |
| 20 | + for m ∈ n:M |
| 21 | + L_m_n = Symbol(:L_,m,:_,n) |
| 22 | + push!(q.args, :($L_m_n = @inbounds A[$n, $m])) |
| 23 | + end |
| 24 | + for k ∈ 1:n-1, m ∈ n:M |
| 25 | + L_m_n = Symbol(:L_,m,:_,n) |
| 26 | + L_m_k = Symbol(:L_,m,:_,k) |
| 27 | + L_n_k = Symbol(:L_,n,:_,k) |
| 28 | + push!(q.args, :($L_m_n = muladd(-$L_m_k, $L_n_k', $L_m_n))) |
| 29 | + end |
| 30 | + L_n_n = Symbol(:L_,n,:_,n) |
| 31 | + push!(q.args, :($L_n_n = sqrt($L_n_n))) |
| 32 | + Linv_n_n = Symbol(:Linv_,n,:_,n) |
| 33 | + push!(q.args, :($Linv_n_n = inv($L_n_n))) |
| 34 | + for m ∈ n+1:M |
| 35 | + L_m_n = Symbol(:L_,m,:_,n) |
| 36 | + push!(q.args, :($L_m_n *= $Linv_n_n)) |
| 37 | + end |
23 | 38 | end
|
24 |
| -end |
25 |
| - |
26 |
| -@generated function _cholesky(::Size{(2,2)}, A::StaticMatrix) |
27 |
| - @assert size(A) == (2,2) |
28 |
| - |
29 |
| - quote |
30 |
| - $(Expr(:meta, :inline)) |
31 |
| - @inbounds a = sqrt(A[1]) |
32 |
| - @inbounds b = A[3] / a |
33 |
| - @inbounds c = sqrt(A[4] - b'*b) |
34 |
| - T = promote_type(typeof(sqrt(one(eltype(A)))), Float32) |
35 |
| - similar_type(A,T)((a, zero(T), b, c)) |
36 |
| - end |
37 |
| -end |
38 |
| - |
39 |
| -@generated function _cholesky(::Size{(3,3)}, A::StaticMatrix) |
40 |
| - @assert size(A) == (3,3) |
41 |
| - |
42 |
| - quote |
43 |
| - $(Expr(:meta, :inline)) |
44 |
| - @inbounds a11 = sqrt(A[1]) |
45 |
| - @inbounds a12 = A[4] / a11 |
46 |
| - @inbounds a22 = sqrt(A[5] - a12'*a12) |
47 |
| - @inbounds a13 = A[7] / a11 |
48 |
| - @inbounds a23 = (A[8] - a12'*a13) / a22 |
49 |
| - @inbounds a33 = sqrt(A[9] - a13'*a13 - a23'*a23) |
50 |
| - T = promote_type(typeof(sqrt(one(eltype(A)))), Float32) |
51 |
| - similar_type(A,T)((a11, zero(T), zero(T), a12, a22, zero(T), a13, a23, a33)) |
| 39 | + push!(q.args, :(T = promote_type(typeof(sqrt(one(eltype(A)))), Float32))) |
| 40 | + ret = Expr(:tuple) |
| 41 | + for n ∈ 1:M |
| 42 | + for m ∈ 1:n |
| 43 | + push!(ret.args, Symbol(:L_,n,:_,m)) |
| 44 | + end |
| 45 | + for m ∈ n+1:M |
| 46 | + push!(ret.args, :(zero(T))) |
| 47 | + end |
52 | 48 | end
|
| 49 | + push!(q.args, :(similar_type(A, T)($ret))) |
| 50 | + return Expr(:block, Expr(:meta, :inline), q) |
53 | 51 | end
|
54 | 52 |
|
55 | 53 | # Otherwise default algorithm returning wrapped SizedArray
|
56 |
| -@inline _cholesky(::Size{S}, A::StaticArray) where {S} = |
57 |
| - SizedArray{Tuple{S...}}(Matrix(cholesky(Hermitian(Matrix(A))).U)) |
| 54 | +@inline _cholesky_large(::Size{S}, A::StaticArray) where {S} = |
| 55 | + similar_type(A)(cholesky(Hermitian(Matrix(A))).U) |
58 | 56 |
|
59 | 57 | LinearAlgebra.hermitian_type(::Type{SA}) where {T, S, SA<:SArray{S,T}} = Hermitian{T,SA}
|
0 commit comments