|
1 |
| -_thin_must_hold(thin) = |
| 1 | +_thin_must_hold(thin) = |
2 | 2 | thin || throw(ArgumentError("For the sake of type stability, `thin = true` must hold."))
|
3 | 3 | import Base.qr
|
4 | 4 |
|
5 |
| -function qr(A::StaticMatrix, pivot::Type{Val{true}}; thin::Bool=true) |
| 5 | + |
| 6 | +""" |
| 7 | + qr(A::StaticMatrix, pivot=Val{false}; thin=true) -> Q, R, [p] |
| 8 | +
|
| 9 | +Compute the QR factorization of `A` such that `A = Q*R` or `A[:,p] = Q*R`, see [`qr`](@ref). |
| 10 | +This function does not support `thin=false` keyword option due to type inference instability. |
| 11 | +To use this option call `qr(A, pivot, Val{false})` instead. |
| 12 | +""" |
| 13 | +@inline function qr(A::StaticMatrix, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{false}; thin::Bool=true) |
6 | 14 | _thin_must_hold(thin)
|
7 |
| - Q0, R0, p0 = Base.qr(Matrix(A), pivot) |
8 |
| - T = arithmetic_closure(eltype(A)) |
9 |
| - QT = similar_type(A, T, Size(diagsize(A), diagsize(A))) |
10 |
| - RT = similar_type(A, T) |
11 |
| - PT = similar_type(A, Int, Size(Size(A)[2])) |
12 |
| - QT(Q0), RT(R0), PT(p0) |
| 15 | + return _qr(Size(A), A, pivot, Val{true}) |
13 | 16 | end
|
14 |
| -function qr(A::StaticMatrix, pivot::Type{Val{false}}; thin::Bool=true) |
15 |
| - _thin_must_hold(thin) |
16 |
| - Q0, R0 = Base.qr(Matrix(A), pivot) |
17 |
| - T = arithmetic_closure(eltype(A)) |
18 |
| - QT = similar_type(A, T, Size(diagsize(A), diagsize(A))) |
19 |
| - RT = similar_type(A, T) |
20 |
| - QT(Q0), RT(R0) |
| 17 | + |
| 18 | + |
| 19 | +@inline qr(A::StaticMatrix, pivot::Union{Type{Val{false}}, Type{Val{true}}}, thin::Union{Type{Val{false}}, Type{Val{true}}}) = _qr(Size(A), A, pivot, thin) |
| 20 | + |
| 21 | + |
| 22 | +@generated function _qr(::Size{sA}, A::StaticMatrix{<:Any, <:Any, TA}, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{false}, thin::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) where {sA, TA} |
| 23 | + |
| 24 | + isthin = thin == Type{Val{true}} |
| 25 | + |
| 26 | + SizeQ = Size( sA[1], isthin ? diagsize(Size(A)) : sA[1] ) |
| 27 | + SizeR = Size( diagsize(Size(A)), sA[2] ) |
| 28 | + |
| 29 | + if pivot == Type{Val{true}} |
| 30 | + return quote |
| 31 | + @_inline_meta |
| 32 | + Q0, R0, p0 = Base.qr(Matrix(A), pivot, thin=$isthin) |
| 33 | + T = arithmetic_closure(TA) |
| 34 | + return similar_type(A, T, $(SizeQ))(Q0), |
| 35 | + similar_type(A, T, $(SizeR))(R0), |
| 36 | + similar_type(A, Int, $(Size(sA[2])))(p0) |
| 37 | + end |
| 38 | + else |
| 39 | + if (sA[1]*sA[1] + sA[1]*sA[2])÷2 * diagsize(Size(A)) < 17*17*17 |
| 40 | + return quote |
| 41 | + @_inline_meta |
| 42 | + return qr_unrolled(Size(A), A, pivot, thin) |
| 43 | + end |
| 44 | + else |
| 45 | + return quote |
| 46 | + @_inline_meta |
| 47 | + Q0, R0 = Base.qr(Matrix(A), pivot, thin=$isthin) |
| 48 | + T = arithmetic_closure(TA) |
| 49 | + return similar_type(A, T, $(SizeQ))(Q0), |
| 50 | + similar_type(A, T, $(SizeR))(R0) |
| 51 | + end |
| 52 | + end |
| 53 | + end |
21 | 54 | end
|
| 55 | + |
| 56 | + |
| 57 | +# Compute the QR decomposition of `A` such that `A = Q*R` |
| 58 | +# by Householder reflections without pivoting. |
| 59 | +# |
| 60 | +# `thin=true` (reduced) method will produce `Q` and `R` in truncated form, |
| 61 | +# in the case of `thin=false` Q is full, but R is still reduced, see [`qr`](@ref). |
| 62 | +# |
| 63 | +# For original source code see below. |
| 64 | +@generated function qr_unrolled(::Size{sA}, A::StaticMatrix{<:Any, <:Any, TA}, pivot::Type{Val{false}}, thin::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) where {sA, TA} |
| 65 | + m, n = sA[1], sA[2] |
| 66 | + |
| 67 | + Q = [Symbol("Q_$(i)_$(j)") for i = 1:m, j = 1:m] |
| 68 | + R = [Symbol("R_$(i)_$(j)") for i = 1:m, j = 1:n] |
| 69 | + |
| 70 | + initQ = [:($(Q[i, j]) = $(i == j ? one : zero)(T)) for i = 1:m, j = 1:m] # Q .= eye(A) |
| 71 | + initR = [:($(R[i, j]) = T(A[$i, $j])) for i = 1:m, j = 1:n] # R .= A |
| 72 | + |
| 73 | + code = quote end |
| 74 | + for k = 1:min(m - 1 + !(TA<:Real), n) |
| 75 | + #x = view(R, k:m, k) |
| 76 | + #τk = reflector!(x) |
| 77 | + push!(code.args, :(ξ1 = $(R[k, k]))) |
| 78 | + ex = :(normu = abs2(ξ1)) |
| 79 | + for i = k+1:m |
| 80 | + ex = :($ex + abs2($(R[i, k]))) |
| 81 | + end |
| 82 | + push!(code.args, :(normu = sqrt($ex))) |
| 83 | + push!(code.args, :(ν = copysign(normu, real(ξ1)))) |
| 84 | + push!(code.args, :(ξ1 += ν)) |
| 85 | + push!(code.args, :(invξ1 = ξ1 == zero(T) ? zero(T) : inv(ξ1))) |
| 86 | + push!(code.args, :($(R[k, k]) = -ν)) |
| 87 | + for i = k+1:m |
| 88 | + push!(code.args, :($(R[i, k]) *= invξ1)) |
| 89 | + end |
| 90 | + push!(code.args, :(τk = ν == zero(T) ? zero(T) : ξ1/ν)) |
| 91 | + |
| 92 | + #reflectorApply!(x, τk, view(R, k:m, k+1:n)) |
| 93 | + for j = k+1:n |
| 94 | + ex = :($(R[k, j])) |
| 95 | + for i = k+1:m |
| 96 | + ex = :($ex + $(R[i, k])'*$(R[i, j])) |
| 97 | + end |
| 98 | + push!(code.args, :(vRj = τk'*$ex)) |
| 99 | + push!(code.args, :($(R[k, j]) -= vRj)) |
| 100 | + for i = k+1:m |
| 101 | + push!(code.args, :($(R[i, j]) -= $(R[i, k])*vRj)) |
| 102 | + end |
| 103 | + end |
| 104 | + |
| 105 | + #reflectorApplyRight!(x, τk, view(Q, 1:m, k:m)) |
| 106 | + for i = 1:m |
| 107 | + ex = :($(Q[i, k])) |
| 108 | + for j = k+1:m |
| 109 | + ex = :($ex + $(Q[i, j])*$(R[j, k])) |
| 110 | + end |
| 111 | + push!(code.args, :(Qiv = $ex*τk)) |
| 112 | + push!(code.args, :($(Q[i, k]) -= Qiv)) |
| 113 | + for j = k+1:m |
| 114 | + push!(code.args, :($(Q[i, j]) -= Qiv*$(R[j, k])')) |
| 115 | + end |
| 116 | + end |
| 117 | + |
| 118 | + for i = k+1:m |
| 119 | + push!(code.args, :($(R[i, k]) = zero(T))) |
| 120 | + end |
| 121 | + end |
| 122 | + |
| 123 | + # truncate Q and R sizes in LAPACK consilient way |
| 124 | + if thin == Type{Val{true}} |
| 125 | + mQ, nQ = m, min(m, n) |
| 126 | + else |
| 127 | + mQ, nQ = m, m |
| 128 | + end |
| 129 | + mR, nR = min(m, n), n |
| 130 | + |
| 131 | + return quote |
| 132 | + @_inline_meta |
| 133 | + T = arithmetic_closure(TA) |
| 134 | + @inbounds $(Expr(:block, initQ...)) |
| 135 | + @inbounds $(Expr(:block, initR...)) |
| 136 | + @inbounds $code |
| 137 | + @inbounds return similar_type(A, T, $(Size(mQ, nQ)))( tuple($(Q[1:mQ, 1:nQ]...)) ), |
| 138 | + similar_type(A, T, $(Size(mR, nR)))( tuple($(R[1:mR, 1:nR]...)) ) |
| 139 | + end |
| 140 | + |
| 141 | +end |
| 142 | + |
| 143 | + |
| 144 | +## Source for @generated qr_unrolled() function above. |
| 145 | +## Derived from base/linalg/qr.jl |
| 146 | +## thin=true version of QR |
| 147 | +#function qr_unrolled(A::StaticMatrix{<:Any, <:Any, TA}) where {TA} |
| 148 | +# m, n = size(A) |
| 149 | +# T = arithmetic_closure(TA) |
| 150 | +# Q = eye(MMatrix{m,m,T,m*m}) |
| 151 | +# R = MMatrix{m,n,T,m*n}(A) |
| 152 | +# for k = 1:min(m - 1 + !(TA<:Real), n) |
| 153 | +# #x = view(R, k:m, k) |
| 154 | +# #τk = reflector!(x) |
| 155 | +# ξ1 = R[k, k] |
| 156 | +# normu = abs2(ξ1) |
| 157 | +# for i = k+1:m |
| 158 | +# normu += abs2(R[i, k]) |
| 159 | +# end |
| 160 | +# normu = sqrt(normu) |
| 161 | +# ν = copysign(normu, real(ξ1)) |
| 162 | +# ξ1 += ν |
| 163 | +# invξ1 = ξ1 == zero(T) ? zero(T) : inv(ξ1) |
| 164 | +# R[k, k] = -ν |
| 165 | +# for i = k+1:m |
| 166 | +# R[i, k] *= invξ1 |
| 167 | +# end |
| 168 | +# τk = ν == zero(T) ? zero(T) : ξ1/ν |
| 169 | +# |
| 170 | +# #reflectorApply!(x, τk, view(R, k:m, k+1:n)) |
| 171 | +# for j = k+1:n |
| 172 | +# vRj = R[k, j] |
| 173 | +# for i = k+1:m |
| 174 | +# vRj += R[i, k]'*R[i, j] |
| 175 | +# end |
| 176 | +# vRj = τk'*vRj |
| 177 | +# R[k, j] -= vRj |
| 178 | +# for i = k+1:m |
| 179 | +# R[i, j] -= R[i, k]*vRj |
| 180 | +# end |
| 181 | +# end |
| 182 | +# |
| 183 | +# #reflectorApplyRight!(x, τk, view(Q, 1:m, k:m)) |
| 184 | +# for i = 1:m |
| 185 | +# Qiv = Q[i, k] |
| 186 | +# for j = k+1:m |
| 187 | +# Qiv += Q[i, j]*R[j, k] |
| 188 | +# end |
| 189 | +# Qiv = Qiv*τk |
| 190 | +# Q[i, k] -= Qiv |
| 191 | +# for j = k+1:m |
| 192 | +# Q[i, j] -= Qiv*R[j, k]' |
| 193 | +# end |
| 194 | +# end |
| 195 | +# |
| 196 | +# for i = k+1:m |
| 197 | +# R[i, k] = zero(T) |
| 198 | +# end |
| 199 | +# |
| 200 | +# end |
| 201 | +# if m > n |
| 202 | +# return (similar_type(A, T, Size(m, n))(Q[1:m,1:n]), similar_type(A, T, Size(n, n))(R[1:n,1:n])) |
| 203 | +# else |
| 204 | +# return (similar_type(A, T, Size(m, m))(Q), similar_type(A, T, Size(n, n))(R)) |
| 205 | +# end |
| 206 | +#end |
| 207 | + |
0 commit comments