Skip to content

ApproxFun+IntervalArithmetic: Add support for constructor  #2

@dlfivefifty

Description

@dlfivefifty

The following would ideally work:

julia> using ApproxFun

julia> import IntervalArithmetic: @interval

julia> Base.sinpi(x::IntervalArithmetic.Interval) = sin*x)

julia> Fun(exp, @interval(0)..@interval(1))
ERROR: MethodError: no method matching plan_chebyshevtransform(::Array{IntervalArithmetic.Interval{Float64},1})
Closest candidates are:
  plan_chebyshevtransform(::Array{D<:DualNumbers.Dual,1}; kind) where D<:DualNumbers.Dual at /Users/solver/Projects/ApproxFun.jl/src/Extras/dualnumbers.jl:35
  plan_chebyshevtransform(::AbstractArray{T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64},1}; kind) where T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64} at /Users/solver/.julia/packages/FastTransforms/vEjxF/src/chebyshevtransform.jl:29
  plan_chebyshevtransform(::AbstractArray{T<:Union{Complex{BigFloat}, BigFloat},1}; kind) where T<:Union{Complex{BigFloat}, BigFloat} at /Users/solver/Projects/ApproxFun.jl/src/Extras/fftGeneric.jl:49
Stacktrace:
 [1] plan_transform(::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}, ::Array{IntervalArithmetic.Interval{Float64},1}) at /Users/solver/Projects/ApproxFunOrthogonalPolynomials.jl/src/Spaces/Chebyshev/Chebyshev.jl:65
 [2] transform(::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}, ::Array{IntervalArithmetic.Interval{Float64},1}) at /Users/solver/Projects/ApproxFunBase.jl/src/Space.jl:427
 [3] default_Fun(::Type{IntervalArithmetic.Interval{Float64}}, ::Function, ::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}, ::Array{IntervalArithmetic.Interval{Float64},1}, ::Type{Val{false}}) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:44
 [4] default_Fun(::ApproxFunBase.DFunction, ::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}, ::Int64, ::Type{Val{false}}) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:57
 [5] default_Fun(::Function, ::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}, ::Int64) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:72
 [6] default_Fun(::ApproxFunBase.DFunction, ::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:121
 [7] Fun(::Function, ::Chebyshev{Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}},IntervalArithmetic.Interval{Float64}}) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:177
 [8] Fun(::Function, ::Interval{:closed,:closed,IntervalArithmetic.Interval{Float64}}) at /Users/solver/Projects/ApproxFunBase.jl/src/constructors.jl:173
 [9] top-level scope at none:0

Ideally, the transform would return a data structure representing an infinite vector with exponential decay. It's actually already possible to construct such a thing using InfiniteArrays.jl:

julia> BroadcastArray(IntervalArithmetic.Interval, -2.0 .^(-(1:∞)), 2.0 .^(-(1:∞)))
BroadcastArray{IntervalArithmetic.Interval{Float64},1,Base.Broadcast.Broadcasted{LazyArrays.LazyArrayStyle{1},Tuple{InfiniteArrays.OneToInf{Int64}},Type{IntervalArithmetic.Interval},Tuple{BroadcastArray{Float64,1,Base.Broadcast.Broadcasted{LazyArrays.LazyArrayStyle{1},Tuple{InfiniteArrays.OneToInf{Int64}},typeof(-),Tuple{BroadcastArray{Float64,1,Base.Broadcast.Broadcasted{LazyArrays.LazyArrayStyle{1},Tuple{InfiniteArrays.OneToInf{Int64}},typeof(^),Tuple{Float64,InfiniteArrays.InfStepRange{Int64,Int64}}}}}}},BroadcastArray{Float64,1,Base.Broadcast.Broadcasted{LazyArrays.LazyArrayStyle{1},Tuple{InfiniteArrays.OneToInf{Int64}},typeof(^),Tuple{Float64,InfiniteArrays.InfStepRange{Int64,Int64}}}}}}} with indices OneToInf():
 [-0.5, 0.5]                
 [-0.25, 0.25]              
 [-0.125, 0.125]            
 [-0.0625, 0.0625]          
 [-0.03125, 0.03125]        
 [-0.015625, 0.015625]      
 [-0.0078125, 0.0078125]    
 [-0.00390625, 0.00390625]  
 [-0.00195313, 0.00195313]  
 [-0.000976563, 0.000976563]
 [-0.000488282, 0.000488282]
 [-0.000244141, 0.000244141]
 [-0.000122071, 0.000122071]
 [-6.10352e-05, 6.10352e-05]
 [-3.05176e-05, 3.05176e-05]
 [-1.52588e-05, 1.52588e-05]
 [-7.6294e-06, 7.6294e-06]  
 [-3.8147e-06, 3.8147e-06]  
            

This would be combined with a finite vector of coefficients using Vcat. Some mathematical thought is needed on how to calculate this automatically, which would require bounding in a Bernstein ellipse.

@dpsanders FYI.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions