7
7
measure=default_measure(machine.model),
8
8
rows=nothing,
9
9
weights=nothing,
10
- operation=predict ,
10
+ operation=nothing ,
11
11
range=nothing,
12
12
acceleration=default_resource(),
13
13
acceleration_grid=CPU1(),
@@ -26,8 +26,8 @@ the (possibly nested) RNG field, and a vector `rngs` of RNG's, one for
26
26
each curve. Alternatively, set `rngs` to the number of curves desired,
27
27
in which case RNG's are automatically generated. The individual curve
28
28
computations can be distributed across multiple processes using
29
- `acceleration=CPUProcesses()` or `acceleration=CPUThreads()`. See the second example below for a
30
- demonstration.
29
+ `acceleration=CPUProcesses()` or `acceleration=CPUThreads()`. See the
30
+ second example below for a demonstration.
31
31
32
32
```julia
33
33
X, y = @load_boston;
@@ -73,27 +73,6 @@ a machine.
73
73
- `resolution` - number of points generated from `range` (number model
74
74
evaluations); default is `30`
75
75
76
- - `resampling` - resampling strategy; default is `Holdout(fraction_train=0.7)`
77
-
78
- - `repeats` - set to more than `1` for repeated (Monte Carlo) resampling
79
-
80
- - `measure` - performance measure (metric); automatically inferred
81
- from model by default when possible
82
-
83
- - `rows` - row indices to which resampling should be restricted;
84
- default is all rows
85
-
86
- - `weights` - sample weights used by `measure` where supported
87
-
88
- - `operation` - operation, such as `predict`, to be used in
89
- evaluations. If `prediction_type(mach.model) == :probabilistic` but
90
- `prediction_type(measure) == :deterministic` consider `,`predict_mode`,
91
- `predict_mode` or `predict_median`; default is `predict`.
92
-
93
- - `range` - object constructed using `range(model, ...)` or
94
- `range(type, ...)` representing one-dimensional hyper-parameter
95
- range.
96
-
97
76
- `acceleration` - parallelization option for passing to `evaluate!`;
98
77
an instance of `CPU1`, `CPUProcesses` or `CPUThreads` from the
99
78
`ComputationalResources.jl`; default is `default_resource()`
@@ -107,13 +86,18 @@ a machine.
107
86
- `rng_name` - name of the model hyper-parameter representing a random
108
87
number generator (see above); possibly nested
109
88
89
+ Other key-word options are documented at [`TunedModel`](@ref).
90
+
110
91
"""
111
92
learning_curve (mach:: Machine{<:Supervised} ; kwargs... ) =
112
93
learning_curve (mach. model, mach. args... ; kwargs... )
113
94
114
95
# for backwards compatibility
115
- learning_curve! (mach:: Machine{<:Supervised} ; kwargs... ) =
96
+ function learning_curve! (mach:: Machine{<:Supervised} ; kwargs... )
97
+ Base. depwarn (" `learning_curve!` is deprecated, use `learning_curve` instead. " ,
98
+ Core. Typeof (learning_curve!). name. mt. name)
116
99
learning_curve (mach; kwargs... )
100
+ end
117
101
118
102
function learning_curve (model:: Supervised , args... ;
119
103
resolution= 30 ,
@@ -122,7 +106,7 @@ function learning_curve(model::Supervised, args...;
122
106
measures= nothing ,
123
107
measure= measures,
124
108
rows= nothing ,
125
- operation= predict ,
109
+ operation= nothing ,
126
110
ranges:: Union{Nothing,ParamRange} = nothing ,
127
111
range:: Union{Nothing,ParamRange} ,
128
112
repeats= 1 ,
0 commit comments