Skip to content

Files

Latest commit

 

History

History
262 lines (225 loc) · 6.4 KB

Description.md

File metadata and controls

262 lines (225 loc) · 6.4 KB

Detail Parameter Settings / Default Setting

Extra parameters of listed methods other than population size / number of solutions and maximum number of iterations

Ant Colony Optimization (ACO)

  • ACO contains 5 extra parameters
opts.tau   = 1;      % pheromone value
opts.eta   = 1;      % heuristic desirability
opts.alpha = 1;      % control pheromone
opts.beta  = 0.1;    % control heuristic
opts.rho   = 0.2;    % pheromone trail decay coefficient

Ant Colony System (ACS)

  • ACS contains 6 extra parameters
opts.tau   = 1;      % pheromone value
opts.eta   = 1;      % heuristic desirability
opts.alpha = 1;      % control pheromone
opts.beta  = 1;      % control heuristic
opts.rho   = 0.2;    % pheromone trail decay coefficient
opts.phi   = 0.5;    % pheromena coefficient

Artificial Bee Colony (ABC)

  • ABC contains 1 extra parameter
opts.max   = 5;      % Maximum limits allowed

Artificial Butterfly Optimization (ABO)

  • ABO contains 3 extra parameters
opts.stepe = 0.05;    % control number of sunspot 
opts.ratio = 0.2;     % control step
opts.ty    = 1;       % version 1 or 2

Atom Search Optimization (ASO)

  • ASO contains 2 extra parameters
opts.alpha = 50;     % depth weight
opts.beta  = 0.2;    % multiplier weight

Bat Algorithm (BA)

  • BA contains 6 extra parameters
opts.fmax   = 2;      % maximum frequency
opts.fmin   = 0;      % minimum frequency
opts.alpha  = 0.9;    % constant
opts.gamma  = 0.9;    % constant
opts.A      = 2;      % maximum loudness
opts.r      = 1;      % maximum pulse rate

Butterfly Optimization Algorithm (BOA)

  • BOA contains 2 extra parameters
opts.c  = 0.01;    % modular modality
opts.p  = 0.8;     % switch probability

Crow Search Algorithm (CSA)

  • CSA contains 2 extra parameters
opts.AP  = 0.1;    % awareness probability
opts.fl  = 1.5;    % flight length

Cuckoo Search (CS)

  • CS contains 1 extra parameter
opts.Pa  = 0.25;   % discovery rate

Differential Evolution (DE)

  • DE contains 2 extra parameters
opts.CR = 0.9;    % crossover rate
opts.F  = 0.5;    % constant factor

Emperor Penguin Optimizer (EPO)

  • EPO contains 3 extra parameters
opts.M  = 2;      % movement parameter
opts.f  = 3;      % control parameter
opts.l  = 2;      % control parameter

Equilibrium Optimizer (EO)

  • EO contains 3 extra parameters
opts.a1  = 2;      % constant
opts.a2  = 1;      % constant
opts.GP  = 0.5;    % generation probability 

Firefly Algorithm (FA)

  • FA contains 4 extra parameters
opts.alpha  = 1;       % constant
opts.beta0  = 1;       % light amplitude
opts.gamma  = 1;       % absorbtion coefficient
opts.theta  = 0.97;    % control alpha

Flower Pollination Algorithm (FPA)

  • FPA contains 1 extra parameter
opts.P  = 0.8;      % switch probability

Genetic Algorithm (GA)

  • GA contains 2 / 3 extra parameters
opts.CR  = 0.8;      % crossover rate
opts.MR  = 0.01;     % mutation rate
opts.Ts  = 3;        % tournament size (only for 'gat')

Gravitational Search Algorithm (GSA)

  • GSA contains 2 extra parameters
opts.G0     = 100;   % initial gravitational constant
opts.alpha  = 20;    % cosntant

Harmony Search (HS)

  • HS contains 3 extra parameters
opts.PAR   = 0.05;   % pitch adjusting rate
opts.HMCR  = 0.7;    % harmony memory considering rate
opts.bw    = 0.2;    % bandwidth

Henry Gas Solubility Optimization (HGSO)

  • HGSO contains 7 extra parameters
opts.Nc     = 2;       % number of gas types / cluster
opts.K      = 1;       % constant
opts.alpha  = 1;       % influence of other gas
opts.beta   = 1;       % constant 
opts.L1     = 5E-3;    % constant 
opts.L2     = 100;     % constant 
opts.L3     = 1E-2;    % constant 

Human Learning Optimization (HLO)

  • HLO contains 2 extra parameters
opts.pi  = 0.85;    % probability of individual learning
opts.pr  = 0.1;     % probability of exploration learning

Manta Ray Foraging Optimization (MRFO)

  • MRFO contains 1 extra parameter
opts.S  = 2;     % somersault factor 

Marine Predators Algorithm (MPA)

  • MPA contains 2 extra parameters
opts.P     = 0.5;    % constant
opts.FADs  = 0.2;    % fish aggregating devices effect

Monarch Butterfly Optimization (MBO)

  • MBO contains 5 extra parameters
opts.peri   = 1.2;     % migration period
opts.p      = 5/12;    % ratio
opts.Smax   = 1;       % maximum step
opts.BAR    = 5/12;    % butterfly adjusting rate
opts.N1     = 4;       % number of butterflies in land 1

Moth Flame Optimization (MFO)

  • MFO contains 1 extra parameter
opts.b  = 1;    % constant

Multi-Verse Optimizer (MVO)

  • MVO contains 3 extra parameters
opts.p     = 6;       % control TDR
opts.Wmax  = 1;       % maximum WEP
opts.Wmin  = 0.2;     % minimum WEP

Particle Swarm Optimization (PSO)

  • PSO contains 3 extra parameters
opts.c1  = 2;         % cognitive factor
opts.c2  = 2;         % social factor 
opts.w   = 0.9;       % inertia weight

Poor And Rich Optimization (PRO)

  • PRO contains 1 extra parameter
opts.Pmut = 0.06;    % mutation probability

Satin Bower Bird Optimization (SBO)

  • SBO contains 3 extra parameters
opts.alpha  = 0.94;    % constant
opts.z      = 0.02;    % constant
opts.MR     = 0.05;    % mutation rate

Simulated Annealing (SA)

  • SA contains 2 extra parameters
opts.c   = 0.93;    % cooling rate
opts.T0  = 100;     % initial temperature

Sine Cosine Algorithm (SCA)

  • SCA contains 1 extra parameter
opts.alpha  = 2;    % constant

Tree Growth Algorithm (TGA)

  • TGA contains 5 extra parameters
opts.N1      = 3;      % size of first group
opts.N2      = 5;      % size of second group
opts.N4      = 3;      % size of fourth group
opts.theta   = 0.8;    % tree reduction rate of power
opts.lambda  = 0.5;    % control nearest tree

Tree Seed Algorithm (TSA)

  • TSA contains 1 extra parameter
opts.ST    = 0.1;    % switch probability

Weighted Superposition Attraction (WSA)

  • WSA contains 4 extra parameters
opts.tau    = 0.8;      % constant 
opts.sl     = 0.035;    % step length
opts.phi    = 0.001;    % constant
opts.lambda = 0.75;     % constant

Whale Optimization Algorithm (WOA)

  • WOA contains 1 extra parameter
opts.b  = 1;    % constant