@@ -92,8 +92,8 @@ void dpnp_rng_beta_c(void* result, _DataType a, _DataType b, size_t size)
92
92
}
93
93
else
94
94
{
95
- int errcode = vdRngBeta (VSL_RNG_METHOD_BETA_CJA, get_rng_stream (), size,
96
- result1, a, b, displacement, scalefactor);
95
+ int errcode =
96
+ vdRngBeta (VSL_RNG_METHOD_BETA_CJA, get_rng_stream (), size, result1, a, b, displacement, scalefactor);
97
97
if (errcode != VSL_STATUS_OK)
98
98
{
99
99
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_beta_c() failed." );
@@ -121,8 +121,7 @@ void dpnp_rng_binomial_c(void* result, int ntrial, double p, size_t size)
121
121
}
122
122
else
123
123
{
124
- int errcode = viRngBinomial (VSL_RNG_METHOD_BINOMIAL_BTPE, get_rng_stream (),
125
- size, result1, ntrial, p);
124
+ int errcode = viRngBinomial (VSL_RNG_METHOD_BINOMIAL_BTPE, get_rng_stream (), size, result1, ntrial, p);
126
125
if (errcode != VSL_STATUS_OK)
127
126
{
128
127
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_binomial_c() failed." );
@@ -148,8 +147,7 @@ void dpnp_rng_chi_square_c(void* result, int df, size_t size)
148
147
}
149
148
else
150
149
{
151
- int errcode = vdRngChiSquare (VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA, get_rng_stream (),
152
- size, result1, df);
150
+ int errcode = vdRngChiSquare (VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA, get_rng_stream (), size, result1, df);
153
151
if (errcode != VSL_STATUS_OK)
154
152
{
155
153
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_chi_square_c() failed." );
@@ -187,9 +185,9 @@ void dpnp_rng_f_c(void* result, const _DataType df_num, const _DataType df_den,
187
185
188
186
const _DataType d_zero = (_DataType (0.0 ));
189
187
190
- _DataType shape = 0.5 * df_num;
191
- _DataType scale = 2.0 / df_num;
192
- _DataType * den = nullptr ;
188
+ _DataType shape = 0.5 * df_num;
189
+ _DataType scale = 2.0 / df_num;
190
+ _DataType* den = nullptr ;
193
191
194
192
_DataType* result1 = reinterpret_cast <_DataType*>(result);
195
193
@@ -204,35 +202,33 @@ void dpnp_rng_f_c(void* result, const _DataType df_num, const _DataType df_den,
204
202
{
205
203
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_f_c() failed." );
206
204
}
207
- shape = 0.5 * df_den;
208
- scale = 2.0 / df_den;
205
+ shape = 0.5 * df_den;
206
+ scale = 2.0 / df_den;
209
207
mkl_rng::gamma<_DataType> gamma_distribution2 (shape, d_zero, scale);
210
208
event_out = mkl_rng::generate (gamma_distribution2, DPNP_RNG_ENGINE, size, den);
211
209
event_out.wait ();
212
210
213
- event_out = mkl_vm::div (DPNP_QUEUE, size, result1, den, result1, no_deps,
214
- mkl_vm::mode::ha);
211
+ event_out = mkl_vm::div (DPNP_QUEUE, size, result1, den, result1, no_deps, mkl_vm::mode::ha);
215
212
event_out.wait ();
216
213
217
214
dpnp_memory_free_c (den);
218
215
}
219
216
else
220
217
{
221
- int errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (),
222
- size, result1, shape, d_zero, scale);
218
+ int errcode =
219
+ vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (), size, result1, shape, d_zero, scale);
223
220
if (errcode != VSL_STATUS_OK)
224
221
{
225
222
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_f_c() failed." );
226
223
}
227
- den = (_DataType *) mkl_malloc (size * sizeof (_DataType), 64 );
224
+ den = (_DataType*) mkl_malloc (size * sizeof (_DataType), 64 );
228
225
if (den == nullptr )
229
226
{
230
227
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_f_c() failed." );
231
228
}
232
- shape = 0.5 *df_den;
233
- scale = 2.0 /df_den;
234
- errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (),
235
- size, den, shape, d_zero, scale);
229
+ shape = 0.5 * df_den;
230
+ scale = 2.0 / df_den;
231
+ errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (), size, den, shape, d_zero, scale);
236
232
if (errcode != VSL_STATUS_OK)
237
233
{
238
234
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_f_c() failed." );
@@ -264,8 +260,7 @@ void dpnp_rng_gamma_c(void* result, _DataType shape, _DataType scale, size_t siz
264
260
}
265
261
else
266
262
{
267
- int errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM, get_rng_stream (), size,
268
- result1, shape, a, scale);
263
+ int errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM, get_rng_stream (), size, result1, shape, a, scale);
269
264
if (errcode != VSL_STATUS_OK)
270
265
{
271
266
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_gamma_c() failed." );
@@ -343,8 +338,7 @@ void dpnp_rng_hypergeometric_c(void* result, int l, int s, int m, size_t size)
343
338
}
344
339
else
345
340
{
346
- int errcode = viRngHypergeometric (VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE, get_rng_stream (),
347
- size, result1, l, s, m);
341
+ int errcode = viRngHypergeometric (VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE, get_rng_stream (), size, result1, l, s, m);
348
342
if (errcode != VSL_STATUS_OK)
349
343
{
350
344
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_hypergeometric_c() failed." );
@@ -386,9 +380,11 @@ void dpnp_rng_logistic_c(void* result, double loc, double scale, size_t size)
386
380
auto event_out = mkl_rng::generate (distribution, DPNP_RNG_ENGINE, size, result1);
387
381
event_out.wait ();
388
382
389
- for (size_t i = 0 ; i < size; i++) result1[i] = log (result1[i]/(1.0 - result1[i]));
383
+ for (size_t i = 0 ; i < size; i++)
384
+ result1[i] = log (result1[i] / (1.0 - result1[i]));
390
385
391
- for (size_t i = 0 ; i < size; i++) result1[i] = loc + scale * result1[i];
386
+ for (size_t i = 0 ; i < size; i++)
387
+ result1[i] = loc + scale * result1[i];
392
388
}
393
389
394
390
template <typename _DataType>
@@ -411,11 +407,7 @@ void dpnp_rng_lognormal_c(void* result, _DataType mean, _DataType stddev, size_t
411
407
}
412
408
413
409
template <typename _DataType>
414
- void dpnp_rng_multinomial_c (void * result,
415
- int ntrial,
416
- const double * p_vector,
417
- const size_t p_vector_size,
418
- size_t size)
410
+ void dpnp_rng_multinomial_c (void * result, int ntrial, const double * p_vector, const size_t p_vector_size, size_t size)
419
411
{
420
412
if (!size)
421
413
{
@@ -438,8 +430,8 @@ void dpnp_rng_multinomial_c(void* result,
438
430
}
439
431
else
440
432
{
441
- int errcode = viRngMultinomial (VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON, get_rng_stream (),
442
- n, result1, ntrial, p_vector_size, p_vector);
433
+ int errcode = viRngMultinomial (
434
+ VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON, get_rng_stream (), n, result1, ntrial, p_vector_size, p_vector);
443
435
if (errcode != VSL_STATUS_OK)
444
436
{
445
437
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_multinomial_c() failed." );
@@ -478,8 +470,14 @@ void dpnp_rng_multivariate_normal_c(void* result,
478
470
}
479
471
else
480
472
{
481
- int errcode = vdRngGaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2, get_rng_stream (),
482
- size1, result1, dimen, VSL_MATRIX_STORAGE_FULL, mean_vector, cov_vector );
473
+ int errcode = vdRngGaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2,
474
+ get_rng_stream (),
475
+ size1,
476
+ result1,
477
+ dimen,
478
+ VSL_MATRIX_STORAGE_FULL,
479
+ mean_vector,
480
+ cov_vector);
483
481
if (errcode != VSL_STATUS_OK)
484
482
{
485
483
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_multivariate_normal_c() failed." );
@@ -505,8 +503,7 @@ void dpnp_rng_negative_binomial_c(void* result, double a, double p, size_t size)
505
503
}
506
504
else
507
505
{
508
- int errcode = viRngNegbinomial (VSL_RNG_METHOD_NEGBINOMIAL_NBAR, get_rng_stream (),
509
- size, result1, a, p);
506
+ int errcode = viRngNegbinomial (VSL_RNG_METHOD_NEGBINOMIAL_NBAR, get_rng_stream (), size, result1, a, p);
510
507
if (errcode != VSL_STATUS_OK)
511
508
{
512
509
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_negative_binomial_c() failed." );
@@ -540,7 +537,7 @@ void dpnp_rng_pareto_c(void* result, double alpha, size_t size)
540
537
541
538
const _DataType d_zero = _DataType (0.0 );
542
539
const _DataType d_one = _DataType (1.0 );
543
- _DataType neg_rec_alp = -1.0 / alpha;
540
+ _DataType neg_rec_alp = -1.0 / alpha;
544
541
545
542
_DataType* result1 = reinterpret_cast <_DataType*>(result);
546
543
@@ -578,16 +575,15 @@ void dpnp_rng_power_c(void* result, double alpha, size_t size)
578
575
579
576
const _DataType d_zero = _DataType (0.0 );
580
577
const _DataType d_one = _DataType (1.0 );
581
- _DataType neg_rec_alp = 1.0 / alpha;
578
+ _DataType neg_rec_alp = 1.0 / alpha;
582
579
583
580
_DataType* result1 = reinterpret_cast <_DataType*>(result);
584
581
585
582
mkl_rng::uniform<_DataType> distribution (d_zero, d_one);
586
583
auto event_out = mkl_rng::generate (distribution, DPNP_RNG_ENGINE, size, result1);
587
584
event_out.wait ();
588
585
589
- event_out = mkl_vm::powx (DPNP_QUEUE, size, result1, neg_rec_alp,
590
- result1, no_deps, mkl_vm::mode::ha);
586
+ event_out = mkl_vm::powx (DPNP_QUEUE, size, result1, neg_rec_alp, result1, no_deps, mkl_vm::mode::ha);
591
587
event_out.wait ();
592
588
}
593
589
@@ -606,7 +602,7 @@ void dpnp_rng_rayleigh_c(void* result, _DataType scale, size_t size)
606
602
607
603
_DataType* result1 = reinterpret_cast <_DataType*>(result);
608
604
609
- mkl_rng::exponential<_DataType> distribution (a, beta);;
605
+ mkl_rng::exponential<_DataType> distribution (a, beta);
610
606
611
607
auto event_out = mkl_rng::generate (distribution, DPNP_RNG_ENGINE, size, result1);
612
608
event_out.wait ();
@@ -615,7 +611,10 @@ void dpnp_rng_rayleigh_c(void* result, _DataType scale, size_t size)
615
611
// with MKL
616
612
// event_out = mkl_blas::axpy(DPNP_QUEUE, size, scale, result1, 1, result1, 1);
617
613
// event_out.wait();
618
- for (size_t i = 0 ; i < size; i++) result1[i] *= scale;
614
+ for (size_t i = 0 ; i < size; i++)
615
+ {
616
+ result1[i] *= scale;
617
+ }
619
618
}
620
619
621
620
template <typename _DataType>
@@ -689,17 +688,15 @@ void dpnp_rng_standard_t_c(void* result, _DataType df, size_t size)
689
688
690
689
_DataType* result1 = reinterpret_cast <_DataType*>(result);
691
690
const _DataType d_zero = 0.0 , d_one = 1.0 ;
692
- _DataType shape = df/ 2 ;
693
- _DataType * sn = nullptr ;
691
+ _DataType shape = df / 2 ;
692
+ _DataType* sn = nullptr ;
694
693
695
694
if (dpnp_queue_is_cpu_c ())
696
695
{
697
- mkl_rng::gamma<_DataType> gamma_distribution (shape, d_zero, 1.0 /shape);
698
- auto event_out = mkl_rng::generate (gamma_distribution, DPNP_RNG_ENGINE,
699
- size, result1);
696
+ mkl_rng::gamma<_DataType> gamma_distribution (shape, d_zero, 1.0 / shape);
697
+ auto event_out = mkl_rng::generate (gamma_distribution, DPNP_RNG_ENGINE, size, result1);
700
698
event_out.wait ();
701
- event_out = mkl_vm::invsqrt (DPNP_QUEUE, size, result1, result1, no_deps,
702
- mkl_vm::mode::ha);
699
+ event_out = mkl_vm::invsqrt (DPNP_QUEUE, size, result1, result1, no_deps, mkl_vm::mode::ha);
703
700
event_out.wait ();
704
701
705
702
sn = reinterpret_cast <_DataType*>(dpnp_memory_alloc_c (size * sizeof (_DataType)));
@@ -712,15 +709,14 @@ void dpnp_rng_standard_t_c(void* result, _DataType df, size_t size)
712
709
event_out = mkl_rng::generate (gaussian_distribution, DPNP_RNG_ENGINE, size, sn);
713
710
event_out.wait ();
714
711
715
- event_out = mkl_vm::mul (DPNP_QUEUE, size, result1, sn, result1, no_deps,
716
- mkl_vm::mode::ha);
712
+ event_out = mkl_vm::mul (DPNP_QUEUE, size, result1, sn, result1, no_deps, mkl_vm::mode::ha);
717
713
dpnp_memory_free_c (sn);
718
714
event_out.wait ();
719
715
}
720
716
else
721
717
{
722
- int errcode = vdRngGamma (VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (),
723
- size, result1, shape, d_zero, 1.0 / shape);
718
+ int errcode = vdRngGamma (
719
+ VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE, get_rng_stream (), size, result1, shape, d_zero, 1.0 / shape);
724
720
725
721
if (errcode != VSL_STATUS_OK)
726
722
{
@@ -729,14 +725,13 @@ void dpnp_rng_standard_t_c(void* result, _DataType df, size_t size)
729
725
730
726
vmdInvSqrt (size, result1, result1, VML_HA);
731
727
732
- sn = (_DataType *) mkl_malloc (size * sizeof (_DataType), 64 );
728
+ sn = (_DataType*) mkl_malloc (size * sizeof (_DataType), 64 );
733
729
if (sn == nullptr )
734
730
{
735
731
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_standard_t_c() failed." );
736
732
}
737
733
738
- errcode = vdRngGaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF, get_rng_stream (), size, sn,
739
- d_zero, d_one);
734
+ errcode = vdRngGaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF, get_rng_stream (), size, sn, d_zero, d_one);
740
735
if (errcode != VSL_STATUS_OK)
741
736
{
742
737
throw std::runtime_error (" DPNP RNG Error: dpnp_rng_standard_t_c() failed." );
@@ -846,8 +841,7 @@ void func_map_init_random(func_map_t& fmap)
846
841
847
842
fmap[DPNPFuncName::DPNP_FN_RNG_STANDARD_NORMAL][eft_DBL][eft_DBL] = {eft_DBL,
848
843
(void *)dpnp_rng_standard_normal_c<double >};
849
- fmap[DPNPFuncName::DPNP_FN_RNG_STANDARD_T][eft_DBL][eft_DBL] = {eft_DBL,
850
- (void *)dpnp_rng_standard_t_c<double >};
844
+ fmap[DPNPFuncName::DPNP_FN_RNG_STANDARD_T][eft_DBL][eft_DBL] = {eft_DBL, (void *)dpnp_rng_standard_t_c<double >};
851
845
852
846
fmap[DPNPFuncName::DPNP_FN_RNG_UNIFORM][eft_DBL][eft_DBL] = {eft_DBL, (void *)dpnp_rng_uniform_c<double >};
853
847
fmap[DPNPFuncName::DPNP_FN_RNG_UNIFORM][eft_FLT][eft_FLT] = {eft_FLT, (void *)dpnp_rng_uniform_c<float >};
0 commit comments