|
1 |
| -#include <dpnp_iface.hpp> |
2 |
| -#include <dpnp_iface_fptr.hpp> |
3 |
| - |
4 |
| -#include <vector> |
5 |
| - |
6 |
| -#include "gtest/gtest.h" |
7 |
| - |
8 |
| -TEST(TestBackendRandomBeta, test_seed) |
9 |
| -{ |
10 |
| - const size_t size = 256; |
11 |
| - size_t seed = 10; |
12 |
| - double a = 0.4; |
13 |
| - double b = 0.5; |
14 |
| - |
15 |
| - auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
16 |
| - |
17 |
| - for (auto device_selector : QueueOptionsDevices) |
18 |
| - { |
19 |
| - dpnp_queue_initialize_c(device_selector); |
20 |
| - double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
21 |
| - double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
22 |
| - |
23 |
| - dpnp_rng_srand_c(seed); |
24 |
| - dpnp_rng_beta_c<double>(result1, a, b, size); |
25 |
| - |
26 |
| - dpnp_rng_srand_c(seed); |
27 |
| - dpnp_rng_beta_c<double>(result2, a, b, size); |
28 |
| - |
29 |
| - for (size_t i = 0; i < size; ++i) |
30 |
| - { |
31 |
| - EXPECT_NEAR(result1[i], result2[i], 0.004); |
32 |
| - } |
33 |
| - } |
34 |
| -} |
35 |
| - |
36 |
| -TEST(TestBackendRandomF, test_seed) |
37 |
| -{ |
38 |
| - const size_t size = 256; |
39 |
| - size_t seed = 10; |
40 |
| - double dfnum = 10.4; |
41 |
| - double dfden = 12.5; |
42 |
| - |
43 |
| - auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
44 |
| - |
45 |
| - for (auto device_selector : QueueOptionsDevices) |
46 |
| - { |
47 |
| - dpnp_queue_initialize_c(device_selector); |
48 |
| - double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
49 |
| - double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
50 |
| - |
51 |
| - dpnp_rng_srand_c(seed); |
52 |
| - dpnp_rng_f_c<double>(result1, dfnum, dfden, size); |
53 |
| - |
54 |
| - dpnp_rng_srand_c(seed); |
55 |
| - dpnp_rng_f_c<double>(result2, dfnum, dfden, size); |
56 |
| - |
57 |
| - for (size_t i = 0; i < size; ++i) |
58 |
| - { |
59 |
| - EXPECT_NEAR(result1[i], result2[i], 0.004); |
60 |
| - } |
61 |
| - } |
62 |
| -} |
63 |
| - |
64 |
| -TEST(TestBackendRandomNormal, test_seed) |
65 |
| -{ |
66 |
| - const size_t size = 256; |
67 |
| - size_t seed = 10; |
68 |
| - double loc = 2.56; |
69 |
| - double scale = 0.8; |
70 |
| - |
71 |
| - auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
72 |
| - |
73 |
| - for (auto device_selector : QueueOptionsDevices) |
74 |
| - { |
75 |
| - dpnp_queue_initialize_c(device_selector); |
76 |
| - double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
77 |
| - double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
78 |
| - |
79 |
| - dpnp_rng_srand_c(seed); |
80 |
| - dpnp_rng_normal_c<double>(result1, loc, scale, size); |
81 |
| - |
82 |
| - dpnp_rng_srand_c(seed); |
83 |
| - dpnp_rng_normal_c<double>(result2, loc, scale, size); |
84 |
| - |
85 |
| - for (size_t i = 0; i < size; ++i) |
86 |
| - { |
87 |
| - EXPECT_NEAR(result1[i], result2[i], 0.004); |
88 |
| - } |
89 |
| - } |
90 |
| -} |
91 |
| - |
92 |
| -TEST(TestBackendRandomUniform, test_seed) |
93 |
| -{ |
94 |
| - const size_t size = 256; |
95 |
| - size_t seed = 10; |
96 |
| - long low = 1; |
97 |
| - long high = 120; |
98 |
| - |
99 |
| - auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
100 |
| - |
101 |
| - for (auto device_selector : QueueOptionsDevices) |
102 |
| - { |
103 |
| - dpnp_queue_initialize_c(device_selector); |
104 |
| - double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
105 |
| - double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
106 |
| - |
107 |
| - dpnp_rng_srand_c(seed); |
108 |
| - dpnp_rng_uniform_c<double>(result1, low, high, size); |
109 |
| - |
110 |
| - dpnp_rng_srand_c(seed); |
111 |
| - dpnp_rng_uniform_c<double>(result2, low, high, size); |
112 |
| - |
113 |
| - for (size_t i = 0; i < size; ++i) |
114 |
| - { |
115 |
| - EXPECT_NEAR(result1[i], result2[i], 0.004); |
116 |
| - } |
117 |
| - } |
118 |
| -} |
119 |
| - |
120 |
| -TEST(TestBackendRandomSrand, test_func_ptr) |
121 |
| -{ |
122 |
| - void* fptr = nullptr; |
123 |
| - DPNPFuncData kernel_data = get_dpnp_function_ptr( |
124 |
| - DPNPFuncName::DPNP_FN_RNG_SRAND, DPNPFuncType::DPNP_FT_DOUBLE, DPNPFuncType::DPNP_FT_DOUBLE); |
125 |
| - |
126 |
| - fptr = get_dpnp_function_ptr1(kernel_data.return_type, |
127 |
| - DPNPFuncName::DPNP_FN_RNG_SRAND, |
128 |
| - DPNPFuncType::DPNP_FT_DOUBLE, |
129 |
| - DPNPFuncType::DPNP_FT_DOUBLE); |
130 |
| - |
131 |
| - EXPECT_TRUE(fptr != nullptr); |
132 |
| -} |
133 |
| - |
134 |
| -int main(int argc, char** argv) |
135 |
| -{ |
136 |
| - ::testing::InitGoogleTest(&argc, argv); |
137 |
| - return RUN_ALL_TESTS(); |
138 |
| -} |
| 1 | +//***************************************************************************** |
| 2 | +// Copyright (c) 2016-2020, Intel Corporation |
| 3 | +// All rights reserved. |
| 4 | +// |
| 5 | +// Redistribution and use in source and binary forms, with or without |
| 6 | +// modification, are permitted provided that the following conditions are met: |
| 7 | +// - Redistributions of source code must retain the above copyright notice, |
| 8 | +// this list of conditions and the following disclaimer. |
| 9 | +// - Redistributions in binary form must reproduce the above copyright notice, |
| 10 | +// this list of conditions and the following disclaimer in the documentation |
| 11 | +// and/or other materials provided with the distribution. |
| 12 | +// |
| 13 | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 14 | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 16 | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 17 | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | +// THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | +//***************************************************************************** |
| 25 | + |
| 26 | +#include <dpnp_iface.hpp> |
| 27 | +#include <dpnp_iface_fptr.hpp> |
| 28 | + |
| 29 | +#include <math.h> |
| 30 | +#include <vector> |
| 31 | + |
| 32 | +#include "gtest/gtest.h" |
| 33 | + |
| 34 | +template <typename _DataType> |
| 35 | +bool check_statistics(_DataType* r, double tM, double tD, double tQ, size_t size) |
| 36 | +{ |
| 37 | + double tD2; |
| 38 | + double sM, sD; |
| 39 | + double sum, sum2; |
| 40 | + double n, s; |
| 41 | + double DeltaM, DeltaD; |
| 42 | + |
| 43 | + /***** Sample moments *****/ |
| 44 | + sum = 0.0; |
| 45 | + sum2 = 0.0; |
| 46 | + for (size_t i = 0; i < size; i++) { |
| 47 | + sum += (double)r[i]; |
| 48 | + sum2 += (double)r[i] * (double)r[i]; |
| 49 | + } |
| 50 | + sM = sum / ((double)size); |
| 51 | + sD = sum2 / (double)size - (sM * sM); |
| 52 | + |
| 53 | + /***** Comparison of theoretical and sample moments *****/ |
| 54 | + n = (double)size; |
| 55 | + tD2 = tD * tD; |
| 56 | + s = ((tQ - tD2) / n) - (2 * (tQ - 2 * tD2) / (n * n)) + ((tQ - 3 * tD2) / (n * n * n)); |
| 57 | + |
| 58 | + DeltaM = (tM - sM) / sqrt(tD / n); |
| 59 | + DeltaD = (tD - sD) / sqrt(s); |
| 60 | + if (fabs(DeltaM) > 3.0 || fabs(DeltaD) > 3.0) |
| 61 | + return false; |
| 62 | + else |
| 63 | + return true; |
| 64 | +} |
| 65 | + |
| 66 | +TEST(TestBackendRandomBeta, test_seed) |
| 67 | +{ |
| 68 | + const size_t size = 256; |
| 69 | + size_t seed = 10; |
| 70 | + double a = 0.4; |
| 71 | + double b = 0.5; |
| 72 | + |
| 73 | + auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
| 74 | + |
| 75 | + for (auto device_selector : QueueOptionsDevices) |
| 76 | + { |
| 77 | + dpnp_queue_initialize_c(device_selector); |
| 78 | + double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 79 | + double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 80 | + |
| 81 | + dpnp_rng_srand_c(seed); |
| 82 | + dpnp_rng_beta_c<double>(result1, a, b, size); |
| 83 | + |
| 84 | + dpnp_rng_srand_c(seed); |
| 85 | + dpnp_rng_beta_c<double>(result2, a, b, size); |
| 86 | + |
| 87 | + for (size_t i = 0; i < size; ++i) |
| 88 | + { |
| 89 | + EXPECT_NEAR(result1[i], result2[i], 0.004); |
| 90 | + } |
| 91 | + } |
| 92 | +} |
| 93 | + |
| 94 | +TEST(TestBackendRandomF, test_seed) |
| 95 | +{ |
| 96 | + const size_t size = 256; |
| 97 | + size_t seed = 10; |
| 98 | + double dfnum = 10.4; |
| 99 | + double dfden = 12.5; |
| 100 | + |
| 101 | + auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
| 102 | + |
| 103 | + for (auto device_selector : QueueOptionsDevices) |
| 104 | + { |
| 105 | + dpnp_queue_initialize_c(device_selector); |
| 106 | + double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 107 | + double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 108 | + |
| 109 | + dpnp_rng_srand_c(seed); |
| 110 | + dpnp_rng_f_c<double>(result1, dfnum, dfden, size); |
| 111 | + |
| 112 | + dpnp_rng_srand_c(seed); |
| 113 | + dpnp_rng_f_c<double>(result2, dfnum, dfden, size); |
| 114 | + |
| 115 | + for (size_t i = 0; i < size; ++i) |
| 116 | + { |
| 117 | + EXPECT_NEAR(result1[i], result2[i], 0.004); |
| 118 | + } |
| 119 | + } |
| 120 | +} |
| 121 | + |
| 122 | +TEST(TestBackendRandomNormal, test_seed) |
| 123 | +{ |
| 124 | + const size_t size = 256; |
| 125 | + size_t seed = 10; |
| 126 | + double loc = 2.56; |
| 127 | + double scale = 0.8; |
| 128 | + |
| 129 | + auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
| 130 | + |
| 131 | + for (auto device_selector : QueueOptionsDevices) |
| 132 | + { |
| 133 | + dpnp_queue_initialize_c(device_selector); |
| 134 | + double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 135 | + double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 136 | + |
| 137 | + dpnp_rng_srand_c(seed); |
| 138 | + dpnp_rng_normal_c<double>(result1, loc, scale, size); |
| 139 | + |
| 140 | + dpnp_rng_srand_c(seed); |
| 141 | + dpnp_rng_normal_c<double>(result2, loc, scale, size); |
| 142 | + |
| 143 | + for (size_t i = 0; i < size; ++i) |
| 144 | + { |
| 145 | + EXPECT_NEAR(result1[i], result2[i], 0.004); |
| 146 | + } |
| 147 | + } |
| 148 | +} |
| 149 | + |
| 150 | +TEST(TestBackendRandomUniform, test_seed) |
| 151 | +{ |
| 152 | + const size_t size = 256; |
| 153 | + size_t seed = 10; |
| 154 | + long low = 1; |
| 155 | + long high = 120; |
| 156 | + |
| 157 | + auto QueueOptionsDevices = std::vector<QueueOptions>{QueueOptions::CPU_SELECTOR, QueueOptions::GPU_SELECTOR}; |
| 158 | + |
| 159 | + for (auto device_selector : QueueOptionsDevices) |
| 160 | + { |
| 161 | + dpnp_queue_initialize_c(device_selector); |
| 162 | + double* result1 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 163 | + double* result2 = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 164 | + |
| 165 | + dpnp_rng_srand_c(seed); |
| 166 | + dpnp_rng_uniform_c<double>(result1, low, high, size); |
| 167 | + |
| 168 | + dpnp_rng_srand_c(seed); |
| 169 | + dpnp_rng_uniform_c<double>(result2, low, high, size); |
| 170 | + |
| 171 | + for (size_t i = 0; i < size; ++i) |
| 172 | + { |
| 173 | + EXPECT_NEAR(result1[i], result2[i], 0.004); |
| 174 | + } |
| 175 | + } |
| 176 | +} |
| 177 | + |
| 178 | +TEST(TestBackendRandomUniform, test_statistics) { |
| 179 | + const size_t size = 256; |
| 180 | + size_t seed = 10; |
| 181 | + long a = 1; |
| 182 | + long b = 120; |
| 183 | + bool check_statistics_res = false; |
| 184 | + |
| 185 | + /***** Theoretical moments *****/ |
| 186 | + double tM = (b + a) / 2.0; |
| 187 | + double tD = ((b - a) * (b - a)) / 12.0; |
| 188 | + double tQ = ((b - a) * (b - a) * (b - a) * (b - a)) / 80.0; |
| 189 | + |
| 190 | + auto QueueOptionsDevices = std::vector<QueueOptions>{ QueueOptions::CPU_SELECTOR, |
| 191 | + QueueOptions::GPU_SELECTOR }; |
| 192 | + |
| 193 | + for (auto device_selector : QueueOptionsDevices) { |
| 194 | + dpnp_queue_initialize_c(device_selector); |
| 195 | + double* result = (double*)dpnp_memory_alloc_c(size * sizeof(double)); |
| 196 | + dpnp_rng_srand_c(seed); |
| 197 | + dpnp_rng_uniform_c<double>(result, a, b, size); |
| 198 | + check_statistics_res = check_statistics<double>(result, tM, tD, tQ, size); |
| 199 | + |
| 200 | + ASSERT_TRUE(check_statistics_res); |
| 201 | + } |
| 202 | +} |
| 203 | + |
| 204 | +TEST(TestBackendRandomSrand, test_func_ptr) { |
| 205 | + |
| 206 | + void* fptr = nullptr; |
| 207 | + DPNPFuncData kernel_data = get_dpnp_function_ptr( |
| 208 | + DPNPFuncName::DPNP_FN_RNG_SRAND, DPNPFuncType::DPNP_FT_DOUBLE, DPNPFuncType::DPNP_FT_DOUBLE); |
| 209 | + |
| 210 | + fptr = get_dpnp_function_ptr1(kernel_data.return_type, |
| 211 | + DPNPFuncName::DPNP_FN_RNG_SRAND, |
| 212 | + DPNPFuncType::DPNP_FT_DOUBLE, |
| 213 | + DPNPFuncType::DPNP_FT_DOUBLE); |
| 214 | + |
| 215 | + EXPECT_TRUE(fptr != nullptr); |
| 216 | +} |
| 217 | + |
| 218 | +int main(int argc, char** argv) |
| 219 | +{ |
| 220 | + ::testing::InitGoogleTest(&argc, argv); |
| 221 | + return RUN_ALL_TESTS(); |
| 222 | +} |
0 commit comments