@@ -124,8 +124,8 @@ def test_beta_check_moments():
124
124
var = numpy .var (dpnp .random .beta (a = a , b = b , size = 10 ** 6 ))
125
125
mean = numpy .mean (dpnp .random .beta (a = a , b = b , size = 10 ** 6 ))
126
126
127
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
128
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
127
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
128
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
129
129
130
130
131
131
def test_binomial_seed ():
@@ -149,8 +149,8 @@ def test_binomial_check_moments():
149
149
expected_var = n * p * (1 - p )
150
150
var = numpy .var (dpnp .random .binomial (n = n , p = p , size = 10 ** 6 ))
151
151
mean = numpy .mean (dpnp .random .binomial (n = n , p = p , size = 10 ** 6 ))
152
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
153
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
152
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
153
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
154
154
155
155
156
156
def test_binomial_check_extreme_value ():
@@ -259,8 +259,8 @@ def test_gamma_check_moments():
259
259
expected_var = shape * scale * scale
260
260
var = numpy .var (dpnp .random .gamma (shape = shape , scale = scale , size = 10 ** 6 ))
261
261
mean = numpy .mean (dpnp .random .gamma (shape = shape , scale = scale , size = 10 ** 6 ))
262
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
263
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
262
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
263
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
264
264
265
265
266
266
def test_geometric_seed ():
@@ -292,8 +292,8 @@ def test_geometric_check_moments():
292
292
expected_var = (1 - p ) / (p ** 2 )
293
293
var = numpy .var (dpnp .random .geometric (p = p , size = size ))
294
294
mean = numpy .mean (dpnp .random .geometric (p = p , size = size ))
295
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
296
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
295
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
296
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
297
297
298
298
299
299
def test_geometric_check_extreme_value ():
@@ -340,8 +340,8 @@ def test_gumbel_check_moments():
340
340
341
341
var = numpy .var (dpnp .random .gumbel (loc = loc , scale = scale , size = size ))
342
342
mean = numpy .mean (dpnp .random .gumbel (loc = loc , scale = scale , size = size ))
343
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
344
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
343
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
344
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
345
345
346
346
347
347
def test_gumbel_check_extreme_value ():
@@ -419,8 +419,8 @@ def test_hypergeometric_check_moments():
419
419
420
420
var = numpy .var (dpnp .random .hypergeometric (ngood = ngood , nbad = nbad , nsample = nsample , size = size ))
421
421
mean = numpy .mean (dpnp .random .hypergeometric (ngood = ngood , nbad = nbad , nsample = nsample , size = size ))
422
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
423
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
422
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
423
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
424
424
425
425
426
426
def test_hypergeometric_check_extreme_value ():
@@ -478,8 +478,8 @@ def test_laplace_check_moments():
478
478
expected_var = 2 * scale * scale
479
479
var = numpy .var (dpnp .random .laplace (loc = loc , scale = scale , size = size ))
480
480
mean = numpy .mean (dpnp .random .laplace (loc = loc , scale = scale , size = size ))
481
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
482
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
481
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
482
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
483
483
484
484
485
485
def test_laplace_check_extreme_value ():
@@ -526,7 +526,7 @@ def test_lognormal_check_moments():
526
526
var = numpy .var (dpnp .random .lognormal (mean = mean , sigma = sigma , size = size ))
527
527
mean = numpy .mean (dpnp .random .lognormal (mean = mean , sigma = sigma , size = size ))
528
528
assert math .isclose (var , expected_var , abs_tol = 0.03 )
529
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
529
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
530
530
531
531
532
532
def test_lognormal_check_extreme_value ():
@@ -605,8 +605,8 @@ def test_multinomial_check_moments():
605
605
606
606
var = numpy .var (dpnp .random .multinomial (n = n , pvals = pvals , size = size ))
607
607
mean = numpy .mean (dpnp .random .multinomial (n = n , pvals = pvals , size = size ))
608
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
609
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
608
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
609
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
610
610
611
611
612
612
def test_multivariate_normal_output_shape_check ():
@@ -664,7 +664,7 @@ def test_multivariate_normal_check_moments():
664
664
res = numpy .array (dpnp .random .multivariate_normal (mean = mean , cov = cov , size = size ))
665
665
res_mean = [numpy .mean (res .T [0 ]), numpy .mean (res .T [1 ])]
666
666
667
- assert_allclose (res_mean , mean , rtol = 1e-03 , atol = 0 )
667
+ assert_allclose (res_mean , mean , rtol = 1e-02 , atol = 0 )
668
668
669
669
670
670
def test_negative_binomial_seed ():
@@ -741,8 +741,8 @@ def test_normal_check_moments():
741
741
expected_var = scale ** 2
742
742
var = numpy .var (dpnp .random .normal (loc = loc , scale = scale , size = size ))
743
743
mean = numpy .mean (dpnp .random .normal (loc = loc , scale = scale , size = size ))
744
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
745
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
744
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
745
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
746
746
747
747
748
748
def test_normal_check_extreme_value ():
@@ -785,8 +785,8 @@ def test_poisson_check_moments():
785
785
expected_var = lam
786
786
var = numpy .var (dpnp .random .poisson (lam = lam , size = size ))
787
787
mean = numpy .mean (dpnp .random .poisson (lam = lam , size = size ))
788
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
789
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
788
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
789
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
790
790
791
791
792
792
def test_poisson_check_extreme_value ():
@@ -849,8 +849,8 @@ def test_rayleigh_check_moments():
849
849
expected_var = ((4 - numpy .pi ) / 2 ) * scale * scale
850
850
var = numpy .var (dpnp .random .rayleigh (scale = scale , size = size ))
851
851
mean = numpy .mean (dpnp .random .rayleigh (scale = scale , size = size ))
852
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
853
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
852
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
853
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
854
854
855
855
856
856
def test_rayleigh_check_extreme_value ():
@@ -893,8 +893,8 @@ def test_standard_exponential_check_moments():
893
893
expected_var = 1.0
894
894
var = numpy .var (dpnp .random .standard_exponential (size = size ))
895
895
mean = numpy .mean (dpnp .random .standard_exponential (size = size ))
896
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
897
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
896
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
897
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
898
898
899
899
900
900
def test_standard_gamma_seed ():
@@ -925,8 +925,8 @@ def test_standard_gamma_check_moments():
925
925
expected_var = shape
926
926
var = numpy .var (dpnp .random .gamma (shape = shape , size = 10 ** 6 ))
927
927
mean = numpy .mean (dpnp .random .gamma (shape = shape , size = 10 ** 6 ))
928
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
929
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
928
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
929
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
930
930
931
931
932
932
def test_standard_gamma_check_extreme_value ():
@@ -959,8 +959,8 @@ def test_standard_normal_check_moments():
959
959
expected_var = 1.0
960
960
var = numpy .var (dpnp .random .standard_normal (size = size ))
961
961
mean = numpy .mean (dpnp .random .standard_normal (size = size ))
962
- assert math .isclose (var , expected_var , abs_tol = 0.003 )
963
- assert math .isclose (mean , expected_mean , abs_tol = 0.003 )
962
+ assert math .isclose (var , expected_var , abs_tol = 0.03 )
963
+ assert math .isclose (mean , expected_mean , abs_tol = 0.03 )
964
964
965
965
966
966
def test_weibull_seed ():
0 commit comments