@@ -276,7 +276,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=N
276
276
return call_origin (numpy .cov , m , y , rowvar , bias , ddof , fweights , aweights )
277
277
278
278
279
- def max (input , axis = None , out = None ):
279
+ def max (input , axis = None , out = None , keepdims = numpy . _NoValue , initial = numpy . _NoValue , where = numpy . _NoValue ):
280
280
"""
281
281
Return the maximum of an array or maximum along an axis.
282
282
@@ -300,33 +300,27 @@ def max(input, axis=None, out=None):
300
300
301
301
"""
302
302
303
- dim_input = input .ndim
304
-
305
- is_input_dparray = isinstance (input , dparray )
306
-
307
- if not use_origin_backend (input ) and is_input_dparray :
308
- if out is not None :
309
- checker_throw_value_error ("max" , "out" , type (out ), None )
310
-
311
- result = dpnp_max (input , axis = axis )
312
-
313
- # scalar returned
314
- if result .shape == (1 ,):
315
- return result .dtype .type (result [0 ])
316
-
317
- return result
303
+ if not use_origin_backend (input ):
304
+ if not isinstance (input , dparray ):
305
+ pass
306
+ elif out is not None :
307
+ pass
308
+ elif keepdims is not numpy ._NoValue :
309
+ pass
310
+ elif initial is not numpy ._NoValue :
311
+ pass
312
+ elif where is not numpy ._NoValue :
313
+ pass
314
+ else :
315
+ result = dpnp_max (input , axis = axis )
318
316
319
- input1 = dpnp .asnumpy (input ) if is_input_dparray else input
317
+ # scalar returned
318
+ if result .shape == (1 ,):
319
+ return result .dtype .type (result [0 ])
320
320
321
- # TODO need to put dparray memory into NumPy call
322
- result_numpy = numpy .max (input1 , axis = axis )
323
- result = result_numpy
324
- if isinstance (result , numpy .ndarray ):
325
- result = dparray (result_numpy .shape , dtype = result_numpy .dtype )
326
- for i in range (result .size ):
327
- result ._setitem_scalar (i , result_numpy .item (i ))
321
+ return result
328
322
329
- return result
323
+ return call_origin ( numpy . max , input , axis , out , keepdims , initial , where )
330
324
331
325
332
326
def mean (a , axis = None , ** kwargs ):
@@ -433,7 +427,7 @@ def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
433
427
return call_origin (numpy .median , a , axis , out , overwrite_input , keepdims )
434
428
435
429
436
- def min (input , axis = None , out = None ):
430
+ def min (input , axis = None , out = None , keepdims = numpy . _NoValue , initial = numpy . _NoValue , where = numpy . _NoValue ):
437
431
"""
438
432
Return the minimum along a given axis.
439
433
@@ -457,31 +451,27 @@ def min(input, axis=None, out=None):
457
451
458
452
"""
459
453
460
- is_input_dparray = isinstance (input , dparray )
461
-
462
- if not use_origin_backend ( input ) and is_input_dparray :
463
- if out is not None :
464
- checker_throw_value_error ( "min" , "out" , type ( out ), None )
465
-
466
- result = dpnp_min ( input , axis = axis )
467
-
468
- # scalar returned
469
- if result . shape == ( 1 ,) :
470
- return result . dtype . type ( result [ 0 ])
471
-
472
- return result
454
+ if not use_origin_backend (input ):
455
+ if not isinstance ( input , dparray ):
456
+ pass
457
+ elif out is not None :
458
+ pass
459
+ elif keepdims is not numpy . _NoValue :
460
+ pass
461
+ elif initial is not numpy . _NoValue :
462
+ pass
463
+ elif where is not numpy . _NoValue :
464
+ pass
465
+ else :
466
+ result = dpnp_min ( input , axis = axis )
473
467
474
- input1 = dpnp .asnumpy (input ) if is_input_dparray else input
468
+ # scalar returned
469
+ if result .shape == (1 ,):
470
+ return result .dtype .type (result [0 ])
475
471
476
- # TODO need to put dparray memory into NumPy call
477
- result_numpy = numpy .min (input1 , axis = axis )
478
- result = result_numpy
479
- if isinstance (result , numpy .ndarray ):
480
- result = dparray (result_numpy .shape , dtype = result_numpy .dtype )
481
- for i in range (result .size ):
482
- result ._setitem_scalar (i , result_numpy .item (i ))
472
+ return result
483
473
484
- return result
474
+ return call_origin ( numpy . min , input , axis , out , keepdims , initial , where )
485
475
486
476
487
477
def std (a , axis = None , dtype = None , out = None , ddof = 0 , keepdims = numpy ._NoValue ):
0 commit comments