Skip to content

Commit c0de100

Browse files
authored
Update README.md
1 parent c015849 commit c0de100

File tree

1 file changed

+11
-9
lines changed

1 file changed

+11
-9
lines changed

README.md

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -84,16 +84,18 @@ To learn how to reproduce the results in tables 1 and 2 of the [paper](https://a
8484
If you find this XAI explainability method interesting or useful in your research, use the following Bibtex annotation to cite us:
8585

8686
```bibtex
87-
@misc{ntrougkas2025ptameexplainimageclassifier,
88-
title={P-TAME: Explain Any Image Classifier with Trained Perturbations},
89-
author={Mariano V. Ntrougkas and Vasileios Mezaris and Ioannis Patras},
90-
year={2025},
91-
eprint={2501.17813},
92-
archivePrefix={arXiv},
93-
primaryClass={cs.CV},
94-
url={https://arxiv.org/abs/2501.17813},
95-
}
87+
@ARTICLE{ntrougkas2025ptameexplainimageclassifier,
88+
author={Ntrougkas, Mariano V. and Mezaris, Vasileios and Patras, Ioannis},
89+
journal={IEEE Open Journal of Signal Processing},
90+
title={P-TAME: Explain Any Image Classifier with Trained Perturbations},
91+
year={2025},
92+
doi={10.1109/OJSP.2025.3568756}}
9693
```
94+
You may want to also consult and, if you find useful, also cite our earlier works on this topic (methods T-TAME, TAME, L-CAM-Img & L-CAM-Fm):
95+
96+
- M. V. Ntrougkas, N. Gkalelis, and V. Mezaris, “T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers.”, IEEE Access, 2024. [doi: 10.1109/ACCESS.2024.3405788](https://doi.org/10.1109/ACCESS.2024.3405788).
97+
- M. Ntrougkas, N. Gkalelis and V. Mezaris, "TAME: Attention Mechanism Based Feature Fusion for Generating Explanation Maps of Convolutional Neural Networks," in 2022 IEEE International Symposium on Multimedia (ISM), Italy, 2022 pp. 58-65. [doi: 10.1109/ISM55400.2022.00014](https://doi.org/10.1109/ISM55400.2022.00014).
98+
- Gkartzonika, I., Gkalelis, N., Mezaris, V. (2023). Learning Visual Explanations for DCNN-Based Image Classifiers Using an Attention Mechanism. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. <https://doi.org/10.1007/978-3-031-25085-9_23>
9799

98100
## Acknowledgement
99101

0 commit comments

Comments
 (0)