Skip to content

Commit d361807

Browse files
authored
.
1 parent 486b5e0 commit d361807

File tree

1 file changed

+2
-29
lines changed

1 file changed

+2
-29
lines changed

docs/thePowerOfXmipp.rst

Lines changed: 2 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -12,34 +12,7 @@ This page highlights the relevance of Xmipp through two concrete examples: **Clp
1212

1313

1414

15-
Example: ClpC1P1P2 Project
16-
------------------------------
17-
18-
.. admonition:: Project Summary
19-
20-
- **Protein**: *[To be completed]*
21-
- **Final Resolution**: *[To be completed]*
22-
- **Number of Movies**: *[To be completed]*
23-
- **EMDB ID**: *[To be completed]*
24-
- **Resolution Method**: *[To be completed]*
25-
- **Xmipp Version**: *[To be completed]*
26-
27-
.. rubric:: Protocols Used
28-
29-
- **CTF Estimation and Consensus**:
30-
- `CTFConsensus`
31-
- **Particle Picking**:
32-
- `ConsensusPicking`
33-
- **Micrograph Quality Control**:
34-
- `DeepMicrographScreen`
35-
- **3D Postprocessing**:
36-
- `XmippProtDeepVolPostProc`
37-
- `emhancer`
38-
- **Masking**:
39-
- `Create3DMask`
40-
41-
42-
Example: HER2-TZB Project
15+
Example: HER2-TZB project
4316
------------------------------
4417

4518
.. admonition:: Project Summary
@@ -82,7 +55,7 @@ Example: HER2-TZB Project
8255
Conclusion
8356
------------------------------
8457

85-
The two projects above exemplify how Xmipp provides a comprehensive toolbox that supports end-to-end cryo-EM workflows. From CTF correction to final volume polishing and validation, Xmipp’s protocols are critical in producing reliable, reproducible, and high-quality structural data.
58+
The projects above exemplify how Xmipp provides a comprehensive toolbox that supports end-to-end cryo-EM workflows. From CTF correction to final volume polishing and validation, Xmipp’s protocols are critical in producing reliable, reproducible, and high-quality structural data.
8659

8760
Future developments in Xmipp continue to incorporate state-of-the-art techniques such as deep learning, automation, and hybrid modeling to push the boundaries of cryo-EM analysis.
8861

0 commit comments

Comments
 (0)