|
| 1 | +use graph_craft::proto::types::PixelLength; |
| 2 | +use graphene_core::raster::image::{Image, ImageFrameTable}; |
| 3 | +use graphene_core::raster::{Bitmap, BitmapMut}; |
| 4 | +use graphene_core::transform::{Transform, TransformMut}; |
| 5 | +use graphene_core::{Color, Ctx}; |
| 6 | + |
| 7 | +/// Blurs the image with a Gaussian or blur kernel filter. |
| 8 | +#[node_macro::node(category("Raster: Filter"))] |
| 9 | +async fn blur( |
| 10 | + _: impl Ctx, |
| 11 | + /// The image to be blurred. |
| 12 | + image_frame: ImageFrameTable<Color>, |
| 13 | + /// The radius of the blur kernel. |
| 14 | + #[range((0., 100.))] |
| 15 | + radius: PixelLength, |
| 16 | + /// Use a lower-quality box kernel instead of a circular Gaussian kernel. This is faster but produces boxy artifacts. |
| 17 | + box_blur: bool, |
| 18 | + /// Opt to incorrectly apply the filter with color calculations in gamma space for compatibility with the results from other software. |
| 19 | + gamma: bool, |
| 20 | +) -> ImageFrameTable<Color> { |
| 21 | + let image_frame_transform = image_frame.transform(); |
| 22 | + let image_frame_alpha_blending = image_frame.one_instance_ref().alpha_blending; |
| 23 | + |
| 24 | + let image = image_frame.one_instance_ref().instance.clone(); |
| 25 | + |
| 26 | + // Run blur algorithm |
| 27 | + let blurred_image = if radius < 0.1 { |
| 28 | + // Minimum blur radius |
| 29 | + image.clone() |
| 30 | + } else if box_blur { |
| 31 | + box_blur_algorithm(image, radius, gamma) |
| 32 | + } else { |
| 33 | + gaussian_blur_algorithm(image, radius, gamma) |
| 34 | + }; |
| 35 | + |
| 36 | + let mut result = ImageFrameTable::new(blurred_image); |
| 37 | + *result.transform_mut() = image_frame_transform; |
| 38 | + *result.one_instance_mut().alpha_blending = *image_frame_alpha_blending; |
| 39 | + |
| 40 | + result |
| 41 | +} |
| 42 | + |
| 43 | +// 1D gaussian kernel |
| 44 | +fn gaussian_kernel(radius: f64) -> Vec<f64> { |
| 45 | + // Given radius, compute the size of the kernel that's approximately three times the radius |
| 46 | + let kernel_radius = (3. * radius).ceil() as usize; |
| 47 | + let kernel_size = 2 * kernel_radius + 1; |
| 48 | + let mut gaussian_kernel: Vec<f64> = vec![0.; kernel_size]; |
| 49 | + |
| 50 | + // Kernel values |
| 51 | + let two_radius_squared = 2. * radius * radius; |
| 52 | + let sum = gaussian_kernel |
| 53 | + .iter_mut() |
| 54 | + .enumerate() |
| 55 | + .map(|(i, value_at_index)| { |
| 56 | + let x = i as f64 - kernel_radius as f64; |
| 57 | + let exponent = -(x * x) / two_radius_squared; |
| 58 | + *value_at_index = exponent.exp(); |
| 59 | + *value_at_index |
| 60 | + }) |
| 61 | + .sum::<f64>(); |
| 62 | + |
| 63 | + // Normalize |
| 64 | + gaussian_kernel.iter_mut().for_each(|value_at_index| *value_at_index /= sum); |
| 65 | + |
| 66 | + gaussian_kernel |
| 67 | +} |
| 68 | + |
| 69 | +fn gaussian_blur_algorithm(mut original_buffer: Image<Color>, radius: f64, gamma: bool) -> Image<Color> { |
| 70 | + if gamma { |
| 71 | + original_buffer.map_pixels(|px| px.to_gamma_srgb().to_associated_alpha(px.a())); |
| 72 | + } else { |
| 73 | + original_buffer.map_pixels(|px| px.to_associated_alpha(px.a())); |
| 74 | + } |
| 75 | + |
| 76 | + let (width, height) = original_buffer.dimensions(); |
| 77 | + |
| 78 | + // Create 1D gaussian kernel |
| 79 | + let kernel = gaussian_kernel(radius); |
| 80 | + let half_kernel = kernel.len() / 2; |
| 81 | + |
| 82 | + // Intermediate buffer for horizontal and vertical passes |
| 83 | + let mut x_axis = Image::new(width, height, Color::TRANSPARENT); |
| 84 | + let mut y_axis = Image::new(width, height, Color::TRANSPARENT); |
| 85 | + |
| 86 | + for pass in [false, true] { |
| 87 | + let (max, old_buffer, current_buffer) = match pass { |
| 88 | + false => (width, &original_buffer, &mut x_axis), |
| 89 | + true => (height, &x_axis, &mut y_axis), |
| 90 | + }; |
| 91 | + let pass = pass as usize; |
| 92 | + |
| 93 | + for y in 0..height { |
| 94 | + for x in 0..width { |
| 95 | + let (mut r_sum, mut g_sum, mut b_sum, mut a_sum, mut weight_sum) = (0., 0., 0., 0., 0.); |
| 96 | + |
| 97 | + for (i, &weight) in kernel.iter().enumerate() { |
| 98 | + let p = [x, y][pass] as i32 + (i as i32 - half_kernel as i32); |
| 99 | + |
| 100 | + if p >= 0 && p < max as i32 { |
| 101 | + if let Some(px) = old_buffer.get_pixel([p as u32, x][pass], [y, p as u32][pass]) { |
| 102 | + r_sum += px.r() as f64 * weight; |
| 103 | + g_sum += px.g() as f64 * weight; |
| 104 | + b_sum += px.b() as f64 * weight; |
| 105 | + a_sum += px.a() as f64 * weight; |
| 106 | + weight_sum += weight; |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + |
| 111 | + // Normalize |
| 112 | + let (r, g, b, a) = if weight_sum > 0. { |
| 113 | + ((r_sum / weight_sum) as f32, (g_sum / weight_sum) as f32, (b_sum / weight_sum) as f32, (a_sum / weight_sum) as f32) |
| 114 | + } else { |
| 115 | + let px = old_buffer.get_pixel(x, y).unwrap(); |
| 116 | + (px.r(), px.g(), px.b(), px.a()) |
| 117 | + }; |
| 118 | + current_buffer.set_pixel(x, y, Color::from_rgbaf32_unchecked(r, g, b, a)); |
| 119 | + } |
| 120 | + } |
| 121 | + } |
| 122 | + |
| 123 | + if gamma { |
| 124 | + y_axis.map_pixels(|px| px.to_linear_srgb().to_unassociated_alpha()); |
| 125 | + } else { |
| 126 | + y_axis.map_pixels(|px| px.to_unassociated_alpha()); |
| 127 | + } |
| 128 | + |
| 129 | + y_axis |
| 130 | +} |
| 131 | + |
| 132 | +fn box_blur_algorithm(mut original_buffer: Image<Color>, radius: f64, gamma: bool) -> Image<Color> { |
| 133 | + if gamma { |
| 134 | + original_buffer.map_pixels(|px| px.to_gamma_srgb().to_associated_alpha(px.a())); |
| 135 | + } else { |
| 136 | + original_buffer.map_pixels(|px| px.to_associated_alpha(px.a())); |
| 137 | + } |
| 138 | + |
| 139 | + let (width, height) = original_buffer.dimensions(); |
| 140 | + let mut x_axis = Image::new(width, height, Color::TRANSPARENT); |
| 141 | + let mut y_axis = Image::new(width, height, Color::TRANSPARENT); |
| 142 | + |
| 143 | + for pass in [false, true] { |
| 144 | + let (max, old_buffer, current_buffer) = match pass { |
| 145 | + false => (width, &original_buffer, &mut x_axis), |
| 146 | + true => (height, &x_axis, &mut y_axis), |
| 147 | + }; |
| 148 | + let pass = pass as usize; |
| 149 | + |
| 150 | + for y in 0..height { |
| 151 | + for x in 0..width { |
| 152 | + let (mut r_sum, mut g_sum, mut b_sum, mut a_sum, mut weight_sum) = (0., 0., 0., 0., 0.); |
| 153 | + |
| 154 | + let i = [x, y][pass]; |
| 155 | + for d in (i as i32 - radius as i32).max(0)..=(i as i32 + radius as i32).min(max as i32 - 1) { |
| 156 | + if let Some(px) = old_buffer.get_pixel([d as u32, x][pass], [y, d as u32][pass]) { |
| 157 | + let weight = 1.; |
| 158 | + r_sum += px.r() as f64 * weight; |
| 159 | + g_sum += px.g() as f64 * weight; |
| 160 | + b_sum += px.b() as f64 * weight; |
| 161 | + a_sum += px.a() as f64 * weight; |
| 162 | + weight_sum += weight; |
| 163 | + } |
| 164 | + } |
| 165 | + |
| 166 | + let (r, g, b, a) = ((r_sum / weight_sum) as f32, (g_sum / weight_sum) as f32, (b_sum / weight_sum) as f32, (a_sum / weight_sum) as f32); |
| 167 | + current_buffer.set_pixel(x, y, Color::from_rgbaf32_unchecked(r, g, b, a)); |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + |
| 172 | + if gamma { |
| 173 | + y_axis.map_pixels(|px| px.to_linear_srgb().to_unassociated_alpha()); |
| 174 | + } else { |
| 175 | + y_axis.map_pixels(|px| px.to_unassociated_alpha()); |
| 176 | + } |
| 177 | + |
| 178 | + y_axis |
| 179 | +} |
0 commit comments