@@ -123,183 +123,3 @@ def rank_sample(
123
123
# [END genappbuilder_rank]
124
124
125
125
return response
126
-
127
-
128
- def grounded_generation_inline_vais_sample (
129
- project_number : str ,
130
- engine_id : str ,
131
- ) -> discoveryengine .GenerateGroundedContentResponse :
132
- # [START genappbuilder_grounded_generation_inline_vais]
133
- from google .cloud import discoveryengine_v1 as discoveryengine
134
-
135
- # TODO(developer): Uncomment these variables before running the sample.
136
- # project_number = "YOUR_PROJECT_NUMBER"
137
- # engine_id = "YOUR_ENGINE_ID"
138
-
139
- client = discoveryengine .GroundedGenerationServiceClient ()
140
-
141
- request = discoveryengine .GenerateGroundedContentRequest (
142
- # The full resource name of the location.
143
- # Format: projects/{project_number}/locations/{location}
144
- location = client .common_location_path (project = project_number , location = "global" ),
145
- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
146
- model_id = "gemini-1.5-flash" ,
147
- ),
148
- # Conversation between user and model
149
- contents = [
150
- discoveryengine .GroundedGenerationContent (
151
- role = "user" ,
152
- parts = [
153
- discoveryengine .GroundedGenerationContent .Part (
154
- text = "How did Google do in 2020? Where can I find BigQuery docs?"
155
- )
156
- ],
157
- )
158
- ],
159
- system_instruction = discoveryengine .GroundedGenerationContent (
160
- parts = [
161
- discoveryengine .GroundedGenerationContent .Part (
162
- text = "Add a smiley emoji after the answer."
163
- )
164
- ],
165
- ),
166
- # What to ground on.
167
- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
168
- grounding_sources = [
169
- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
170
- inline_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .InlineSource (
171
- grounding_facts = [
172
- discoveryengine .GroundingFact (
173
- fact_text = (
174
- "The BigQuery documentation can be found at https://cloud.google.com/bigquery/docs/introduction"
175
- ),
176
- attributes = {
177
- "title" : "BigQuery Overview" ,
178
- "uri" : "https://cloud.google.com/bigquery/docs/introduction" ,
179
- },
180
- ),
181
- ]
182
- ),
183
- ),
184
- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
185
- search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .SearchSource (
186
- # The full resource name of the serving config for a Vertex AI Search App
187
- serving_config = f"projects/{ project_number } /locations/global/collections/default_collection/engines/{ engine_id } /servingConfigs/default_search" ,
188
- ),
189
- ),
190
- ]
191
- ),
192
- )
193
- response = client .generate_grounded_content (request )
194
-
195
- # Handle the response
196
- print (response )
197
- # [END genappbuilder_grounded_generation_inline_vais]
198
-
199
- return response
200
-
201
-
202
- def grounded_generation_google_search_sample (
203
- project_number : str ,
204
- ) -> discoveryengine .GenerateGroundedContentResponse :
205
- # [START genappbuilder_grounded_generation_google_search]
206
- from google .cloud import discoveryengine_v1 as discoveryengine
207
-
208
- # TODO(developer): Uncomment these variables before running the sample.
209
- # project_number = "YOUR_PROJECT_NUMBER"
210
-
211
- client = discoveryengine .GroundedGenerationServiceClient ()
212
-
213
- request = discoveryengine .GenerateGroundedContentRequest (
214
- # The full resource name of the location.
215
- # Format: projects/{project_number}/locations/{location}
216
- location = client .common_location_path (project = project_number , location = "global" ),
217
- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
218
- model_id = "gemini-1.5-flash" ,
219
- ),
220
- # Conversation between user and model
221
- contents = [
222
- discoveryengine .GroundedGenerationContent (
223
- role = "user" ,
224
- parts = [
225
- discoveryengine .GroundedGenerationContent .Part (
226
- text = "How much is Google stock?"
227
- )
228
- ],
229
- )
230
- ],
231
- system_instruction = discoveryengine .GroundedGenerationContent (
232
- parts = [
233
- discoveryengine .GroundedGenerationContent .Part (text = "Be comprehensive." )
234
- ],
235
- ),
236
- # What to ground on.
237
- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
238
- grounding_sources = [
239
- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
240
- google_search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .GoogleSearchSource (
241
- # Optional: For Dynamic Retrieval
242
- dynamic_retrieval_config = discoveryengine .GenerateGroundedContentRequest .DynamicRetrievalConfiguration (
243
- predictor = discoveryengine .GenerateGroundedContentRequest .DynamicRetrievalConfiguration .DynamicRetrievalPredictor (
244
- threshold = 0.7
245
- )
246
- )
247
- )
248
- ),
249
- ]
250
- ),
251
- )
252
- response = client .generate_grounded_content (request )
253
-
254
- # Handle the response
255
- print (response )
256
- # [END genappbuilder_grounded_generation_google_search]
257
-
258
- return response
259
-
260
-
261
- def grounded_generation_streaming_sample (
262
- project_number : str ,
263
- ) -> discoveryengine .GenerateGroundedContentResponse :
264
- # [START genappbuilder_grounded_generation_streaming]
265
- from google .cloud import discoveryengine_v1 as discoveryengine
266
-
267
- # TODO(developer): Uncomment these variables before running the sample.
268
- # project_id = "YOUR_PROJECT_ID"
269
-
270
- client = discoveryengine .GroundedGenerationServiceClient ()
271
-
272
- request = discoveryengine .GenerateGroundedContentRequest (
273
- # The full resource name of the location.
274
- # Format: projects/{project_number}/locations/{location}
275
- location = client .common_location_path (project = project_number , location = "global" ),
276
- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
277
- model_id = "gemini-1.5-flash" ,
278
- ),
279
- # Conversation between user and model
280
- contents = [
281
- discoveryengine .GroundedGenerationContent (
282
- role = "user" ,
283
- parts = [
284
- discoveryengine .GroundedGenerationContent .Part (
285
- text = "Summarize how to delete a data store in Vertex AI Agent Builder?"
286
- )
287
- ],
288
- )
289
- ],
290
- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
291
- grounding_sources = [
292
- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
293
- google_search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .GoogleSearchSource ()
294
- ),
295
- ]
296
- ),
297
- )
298
- responses = client .stream_generate_grounded_content (iter ([request ]))
299
-
300
- for response in responses :
301
- # Handle the response
302
- print (response )
303
- # [END genappbuilder_grounded_generation_streaming]
304
-
305
- return response
0 commit comments