|
2 | 2 | Choropleth map
|
3 | 3 | ==============
|
4 | 4 |
|
5 |
| -The :meth:`pygmt.Figure.plot` method allows us to plot geographical data such |
6 |
| -as polygons which are stored in a :class:`geopandas.GeoDataFrame` object. Use |
7 |
| -:func:`geopandas.read_file` to load data from any supported OGR format such as |
8 |
| -a shapefile (.shp), GeoJSON (.geojson), geopackage (.gpkg), etc. You can also |
9 |
| -use a full URL pointing to your desired data source. Then, pass the |
10 |
| -:class:`geopandas.GeoDataFrame` as an argument to the ``data`` parameter of |
11 |
| -:meth:`pygmt.Figure.plot`, and style the geometry using the ``pen`` parameter. |
12 |
| -To fill the polygons based on a corresponding column you need to set |
13 |
| -``fill="+z"`` as well as select the appropriate column using the ``aspatial`` |
14 |
| -parameter as shown in the example below. |
| 5 | +The :meth:`pygmt.Figure.choropleth` method allows us to plot geographical data such as |
| 6 | +polygons which are stored in a :class:`geopandas.GeoDataFrame` object or a OGR_GMT file. |
| 7 | +Use :func:`geopandas.read_file` to load data from any supported OGR formats such as a |
| 8 | +shapefile (.shp), GeoJSON (.geojson), geopackage (.gpkg), etc. You can also use a full |
| 9 | +URL pointing to your desired data source. Then, pass the :class:`geopandas.GeoDataFrame` |
| 10 | +as an argument to the ``data`` parameter of :meth:`pygmt.Figure.choropleth`, and style |
| 11 | +the geometry using the ``pen`` parameter. To fill the polygons based on a corresponding |
| 12 | +column you need to specify the colum name to the ``column`` parameter. |
15 | 13 | """
|
16 | 14 |
|
17 | 15 | # %%
|
|
29 | 27 | frame="+tPopulation of Chicago",
|
30 | 28 | )
|
31 | 29 |
|
32 |
| -# The dataset contains different attributes, here we select |
33 |
| -# the "population" column to plot. |
| 30 | +# The dataset contains different attributes, here we select the "population" column to |
| 31 | +# plot. |
34 | 32 |
|
35 |
| -# First, we define the colormap to fill the polygons based on |
36 |
| -# the "population" column. |
| 33 | +# First, we define the colormap to fill the polygons based on the "population" column. |
37 | 34 | pygmt.makecpt(
|
38 | 35 | cmap="acton",
|
39 | 36 | series=[gdf["population"].min(), gdf["population"].max(), 10],
|
40 | 37 | continuous=True,
|
41 | 38 | reverse=True,
|
42 | 39 | )
|
43 | 40 |
|
44 |
| -# Next, we plot the polygons and fill them using the defined colormap. |
45 |
| -# The target column is defined by the aspatial parameter. |
46 |
| -fig.plot( |
47 |
| - data=gdf, |
48 |
| - pen="0.3p,gray10", |
49 |
| - fill="+z", |
50 |
| - cmap=True, |
51 |
| - aspatial="Z=population", |
52 |
| -) |
| 41 | +# Next, we plot the polygons and fill them using the defined colormap. The target column |
| 42 | +# is specified by the `column` parameter. |
| 43 | +fig.choropleth(data=gdf, column="population", pen="0.3p,gray10", cmap=True) |
53 | 44 |
|
54 | 45 | # Add colorbar legend
|
55 | 46 | fig.colorbar(frame="x+lPopulation", position="jML+o-0.5c+w3.5c/0.2c")
|
|
0 commit comments