@@ -20,6 +20,7 @@ def data_kind(data, x=None, y=None, z=None):
20
20
Possible types:
21
21
22
22
* a file name provided as 'data'
23
+ * an xarray.DataArray provided as 'data'
23
24
* a matrix provided as 'data'
24
25
* 1D arrays x and y (and z, optionally)
25
26
@@ -28,8 +29,8 @@ def data_kind(data, x=None, y=None, z=None):
28
29
29
30
Parameters
30
31
----------
31
- data : str, 2d array, or None
32
- Data file name or numpy array.
32
+ data : str, xarray.DataArray, 2d array, or None
33
+ Data file name, xarray.DataArray or numpy array.
33
34
x/y : 1d arrays or None
34
35
x and y columns as numpy arrays.
35
36
z : 1d array or None
@@ -39,18 +40,21 @@ def data_kind(data, x=None, y=None, z=None):
39
40
Returns
40
41
-------
41
42
kind : str
42
- One of: ``'file'``, ``'matrix'``, ``'vectors'``.
43
+ One of: ``'file'``, ``'grid'``, ``' matrix'``, ``'vectors'``.
43
44
44
45
Examples
45
46
--------
46
47
47
48
>>> import numpy as np
49
+ >>> import xarray as xr
48
50
>>> data_kind(data=None, x=np.array([1, 2, 3]), y=np.array([4, 5, 6]))
49
51
'vectors'
50
52
>>> data_kind(data=np.arange(10).reshape((5, 2)), x=None, y=None)
51
53
'matrix'
52
54
>>> data_kind(data='my-data-file.txt', x=None, y=None)
53
55
'file'
56
+ >>> data_kind(data=xr.DataArray(np.random.rand(4, 3)))
57
+ 'grid'
54
58
55
59
"""
56
60
if data is None and x is None and y is None :
0 commit comments