You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
keywords = {Formal language theory, Formal grammars, Hardest formal languages, Grammars with context operators, Inverse homomorphisms, Finite transducers},
1806
+
abstract = {In 1973, Greibach (“The hardest context-free language”, SIAM J. Comp., 1973) constructed a context-free language L0 with the property that every context-free language can be reduced to L0 by a homomorphism, thus representing it as an inverse homomorphic image h−1(L0). In this paper, a similar characterization is established for a family of grammars equipped with operators for referring to the left context of any substring, recently defined by Barash and Okhotin (“An extension of context-free grammars with one-sided context specifications”, Inform. Comput., 2014). An essential step of the argument is a new normal form for grammars with context operators, in which every nonterminal symbol defines only strings of odd length in left contexts of even length: the even-odd normal form. The characterization is completed by showing that the language family defined by grammars with context operators is closed under inverse homomorphisms; actually, it is closed under injective nondeterministic finite transductions.}
0 commit comments