@@ -6,177 +6,201 @@ PRETRAINED_MODELS = []
6
6
7
7
@testset " AlexNet" begin
8
8
model = AlexNet ()
9
- @test size (model (rand (Float32, 256 , 256 , 3 , 1 ) )) == (1000 , 1 )
9
+ @test size (model (x_256 )) == (1000 , 1 )
10
10
@test_throws ArgumentError AlexNet (pretrain = true )
11
- @test_skip gradtest (model, rand (Float32, 256 , 256 , 3 , 1 ) )
11
+ @test gradtest (model, x_256 )
12
12
end
13
13
14
+ GC. safepoint ()
14
15
GC. gc ()
15
16
16
17
@testset " VGG" begin
17
18
@testset " VGG($sz , batchnorm=$bn )" for sz in [11 , 13 , 16 , 19 ], bn in [true , false ]
18
19
m = VGG (sz, batchnorm = bn)
19
20
20
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
21
+ @test size (m (x_224 )) == (1000 , 1 )
21
22
if (VGG, sz, bn) in PRETRAINED_MODELS
22
23
@test (VGG (sz, batchnorm = bn, pretrain = true ); true )
23
24
else
24
25
@test_throws ArgumentError VGG (sz, batchnorm = bn, pretrain = true )
25
26
end
26
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ))
27
+ @test gradtest (m, x_224)
28
+ GC. safepoint ()
29
+ GC. gc ()
27
30
end
28
31
end
29
32
33
+ GC. safepoint ()
30
34
GC. gc ()
31
35
32
36
@testset " ResNet" begin
33
37
@testset " ResNet($sz )" for sz in [18 , 34 , 50 , 101 , 152 ]
34
38
m = ResNet (sz)
35
39
36
- @test size (m (rand (Float32, 256 , 256 , 3 , 1 ) )) == (1000 , 1 )
40
+ @test size (m (x_256 )) == (1000 , 1 )
37
41
if (ResNet, sz) in PRETRAINED_MODELS
38
42
@test (ResNet (sz, pretrain = true ); true )
39
43
else
40
44
@test_throws ArgumentError ResNet (sz, pretrain = true )
41
45
end
42
- @test_skip gradtest (m, rand (Float32, 256 , 256 , 3 , 2 ))
46
+ @test gradtest (m, x_256)
47
+ GC. safepoint ()
48
+ GC. gc ()
43
49
end
44
50
45
51
@testset " Shortcut C" begin
46
52
m = Metalhead. resnet (Metalhead. basicblock, :C ;
47
53
channel_config = [1 , 1 ],
48
54
block_config = [2 , 2 , 2 , 2 ])
49
55
50
- @test size (m (rand (Float32, 256 , 256 , 3 , 1 ))) == (1000 , 1 )
56
+ @test size (m (x_256)) == (1000 , 1 )
57
+ @test gradtest (m, x_256)
51
58
end
52
59
end
53
60
61
+ GC. safepoint ()
54
62
GC. gc ()
55
63
56
64
@testset " ResNeXt" begin
57
65
@testset for depth in [50 , 101 , 152 ]
58
66
m = ResNeXt (depth)
59
67
60
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
68
+ @test size (m (x_224 )) == (1000 , 1 )
61
69
if ResNeXt in PRETRAINED_MODELS
62
70
@test (ResNeXt (depth, pretrain = true ); true )
63
71
else
64
72
@test_throws ArgumentError ResNeXt (depth, pretrain = true )
65
73
end
66
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 2 ))
74
+ @test gradtest (m, x_224)
75
+ GC. safepoint ()
76
+ GC. gc ()
67
77
end
68
78
end
69
79
80
+ GC. safepoint ()
70
81
GC. gc ()
71
82
72
83
@testset " GoogLeNet" begin
73
84
m = GoogLeNet ()
74
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
85
+ @test size (m (x_224 )) == (1000 , 1 )
75
86
@test_throws ArgumentError (GoogLeNet (pretrain = true ); true )
76
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ) )
87
+ @test gradtest (m, x_224 )
77
88
end
78
89
90
+ GC. safepoint ()
79
91
GC. gc ()
80
92
81
93
@testset " Inception3" begin
82
94
m = Inception3 ()
83
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
95
+ @test size (m (x_224 )) == (1000 , 1 )
84
96
@test_throws ArgumentError Inception3 (pretrain = true )
85
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 2 ) )
97
+ @test gradtest (m, x_224 )
86
98
end
87
99
100
+ GC. safepoint ()
88
101
GC. gc ()
89
102
90
103
@testset " SqueezeNet" begin
91
104
m = SqueezeNet ()
92
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
105
+ @test size (m (x_224 )) == (1000 , 1 )
93
106
@test_throws ArgumentError (SqueezeNet (pretrain = true ); true )
94
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ) )
107
+ @test gradtest (m, x_224 )
95
108
end
96
109
110
+ GC. safepoint ()
97
111
GC. gc ()
98
112
99
113
@testset " DenseNet" begin
100
114
@testset for sz in [121 , 161 , 169 , 201 ]
101
115
m = DenseNet (sz)
102
116
103
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
117
+ @test size (m (x_224 )) == (1000 , 1 )
104
118
if (DenseNet, sz) in PRETRAINED_MODELS
105
119
@test (DenseNet (sz, pretrain = true ); true )
106
120
else
107
121
@test_throws ArgumentError DenseNet (sz, pretrain = true )
108
122
end
109
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ))
123
+ @test gradtest (m, x_224)
124
+ GC. safepoint ()
125
+ GC. gc ()
110
126
end
111
127
end
112
128
129
+ GC. safepoint ()
113
130
GC. gc ()
114
131
115
132
@testset " MobileNet" verbose = true begin
116
133
@testset " MobileNetv1" begin
117
134
m = MobileNetv1 ()
118
135
119
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
136
+ @test size (m (x_224 )) == (1000 , 1 )
120
137
if MobileNetv1 in PRETRAINED_MODELS
121
138
@test (MobileNetv1 (pretrain = true ); true )
122
139
else
123
140
@test_throws ArgumentError MobileNetv1 (pretrain = true )
124
141
end
125
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ) )
142
+ @test gradtest (m, x_224 )
126
143
end
127
144
145
+ GC. safepoint ()
128
146
GC. gc ()
129
147
130
148
@testset " MobileNetv2" begin
131
149
m = MobileNetv2 ()
132
150
133
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
151
+ @test size (m (x_224 )) == (1000 , 1 )
134
152
if MobileNetv2 in PRETRAINED_MODELS
135
153
@test (MobileNetv2 (pretrain = true ); true )
136
154
else
137
155
@test_throws ArgumentError MobileNetv2 (pretrain = true )
138
156
end
139
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ) )
157
+ @test gradtest (m, x_224 )
140
158
end
141
159
160
+ GC. safepoint ()
142
161
GC. gc ()
143
162
144
163
@testset " MobileNetv3" verbose = true begin
145
164
@testset for mode in [:small , :large ]
146
165
m = MobileNetv3 (mode)
147
166
148
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ) )) == (1000 , 1 )
167
+ @test size (m (x_224 )) == (1000 , 1 )
149
168
if MobileNetv3 in PRETRAINED_MODELS
150
169
@test (MobileNetv3 (mode; pretrain = true ); true )
151
170
else
152
171
@test_throws ArgumentError MobileNetv3 (mode; pretrain = true )
153
172
end
154
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ) )
173
+ @test gradtest (m, x_224 )
155
174
end
156
175
end
157
176
end
158
177
178
+ GC. safepoint ()
159
179
GC. gc ()
160
180
161
181
@testset " ConvNeXt" verbose = true begin
162
- @testset for mode in [:tiny , : small , :base , :large ] # , :xlarge]
163
- @testset for drop_path_rate in [0.0 , 0.5 , 0.99 ]
182
+ @testset for mode in [:small , :base , :large ] # :tiny, #, :xlarge]
183
+ @testset for drop_path_rate in [0.0 , 0.5 ]
164
184
m = ConvNeXt (mode; drop_path_rate)
165
185
166
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ))) == (1000 , 1 )
167
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ))
186
+ @test size (m (x_224)) == (1000 , 1 )
187
+ @test gradtest (m, x_224)
188
+ GC. safepoint ()
189
+ GC. gc ()
168
190
end
169
- GC. gc ()
170
191
end
171
192
end
172
193
194
+ GC. safepoint ()
173
195
GC. gc ()
174
196
175
197
@testset " ConvMixer" verbose = true begin
176
- @testset for mode in [:base , :large , :small ]
198
+ @testset for mode in [:small , :base , :large ]
177
199
m = ConvMixer (mode)
178
200
179
- @test size (m (rand (Float32, 224 , 224 , 3 , 1 ))) == (1000 , 1 )
180
- @test_skip gradtest (m, rand (Float32, 224 , 224 , 3 , 1 ))
201
+ @test size (m (x_224)) == (1000 , 1 )
202
+ @test gradtest (m, x_224)
203
+ GC. safepoint ()
204
+ GC. gc ()
181
205
end
182
206
end
0 commit comments