@@ -5,202 +5,194 @@ using Flux
5
5
PRETRAINED_MODELS = []
6
6
7
7
@testset " AlexNet" begin
8
- model = AlexNet ()
9
- @test size (model (x_256)) == (1000 , 1 )
10
- @test_throws ArgumentError AlexNet (pretrain = true )
11
- @test gradtest (model, x_256)
8
+ model = AlexNet ()
9
+ @test size (model (x_256)) == (1000 , 1 )
10
+ @test_throws ArgumentError AlexNet (pretrain = true )
11
+ @test gradtest (model, x_256)
12
12
end
13
13
14
14
GC. safepoint ()
15
15
GC. gc ()
16
16
17
17
@testset " VGG" begin
18
- @testset " VGG($sz , batchnorm=$bn )" for sz in [11 , 13 , 16 , 19 ], bn in [true , false ]
19
- m = VGG (sz, batchnorm = bn)
20
-
21
- @test size (m (x_224)) == (1000 , 1 )
22
- if (VGG, sz, bn) in PRETRAINED_MODELS
23
- @test (VGG (sz, batchnorm = bn, pretrain = true ); true )
24
- else
25
- @test_throws ArgumentError VGG (sz, batchnorm = bn, pretrain = true )
18
+ @testset " VGG($sz , batchnorm=$bn )" for sz in [11 , 13 , 16 , 19 ], bn in [true , false ]
19
+ m = VGG (sz, batchnorm = bn)
20
+ @test size (m (x_224)) == (1000 , 1 )
21
+ if (VGG, sz, bn) in PRETRAINED_MODELS
22
+ @test (VGG (sz, batchnorm = bn, pretrain = true ); true )
23
+ else
24
+ @test_throws ArgumentError VGG (sz, batchnorm = bn, pretrain = true )
25
+ end
26
+ @test gradtest (m, x_224)
27
+ GC. safepoint ()
28
+ GC. gc ()
26
29
end
27
- @test gradtest (m, x_224)
28
- GC. safepoint ()
29
- GC. gc ()
30
- end
31
30
end
32
31
33
32
GC. safepoint ()
34
33
GC. gc ()
35
34
36
35
@testset " ResNet" begin
37
- @testset " ResNet($sz )" for sz in [18 , 34 , 50 , 101 , 152 ]
38
- m = ResNet (sz)
39
-
40
- @test size (m (x_256)) == (1000 , 1 )
41
- if (ResNet, sz) in PRETRAINED_MODELS
42
- @test (ResNet (sz, pretrain = true ); true )
43
- else
44
- @test_throws ArgumentError ResNet (sz, pretrain = true )
36
+ @testset " ResNet($sz )" for sz in [18 , 34 , 50 , 101 , 152 ]
37
+ m = ResNet (sz)
38
+ @test size (m (x_256)) == (1000 , 1 )
39
+ if (ResNet, sz) in PRETRAINED_MODELS
40
+ @test (ResNet (sz, pretrain = true ); true )
41
+ else
42
+ @test_throws ArgumentError ResNet (sz, pretrain = true )
43
+ end
44
+ @test gradtest (m, x_256)
45
+ GC. safepoint ()
46
+ GC. gc ()
45
47
end
46
- @test gradtest (m, x_256)
47
- GC. safepoint ()
48
- GC. gc ()
49
- end
50
-
51
- @testset " Shortcut C" begin
52
- m = Metalhead. resnet (Metalhead. basicblock, :C ;
53
- channel_config = [1 , 1 ],
54
- block_config = [2 , 2 , 2 , 2 ])
55
48
56
- @test size (m (x_256)) == (1000 , 1 )
57
- @test gradtest (m, x_256)
58
- end
49
+ @testset " Shortcut C" begin
50
+ m = Metalhead. resnet (Metalhead. basicblock, :C ;
51
+ channel_config = [1 , 1 ],
52
+ block_config = [2 , 2 , 2 , 2 ])
53
+ @test size (m (x_256)) == (1000 , 1 )
54
+ @test gradtest (m, x_256)
55
+ end
59
56
end
60
57
61
58
GC. safepoint ()
62
59
GC. gc ()
63
60
64
61
@testset " ResNeXt" begin
65
- @testset for depth in [50 , 101 , 152 ]
66
- m = ResNeXt (depth)
67
-
68
- @test size (m (x_224)) == (1000 , 1 )
69
- if ResNeXt in PRETRAINED_MODELS
70
- @test (ResNeXt (depth, pretrain = true ); true )
71
- else
72
- @test_throws ArgumentError ResNeXt (depth, pretrain = true )
62
+ @testset for depth in [50 , 101 , 152 ]
63
+ m = ResNeXt (depth)
64
+ @test size (m (x_224)) == (1000 , 1 )
65
+ if ResNeXt in PRETRAINED_MODELS
66
+ @test (ResNeXt (depth, pretrain = true ); true )
67
+ else
68
+ @test_throws ArgumentError ResNeXt (depth, pretrain = true )
69
+ end
70
+ @test gradtest (m, x_224)
71
+ GC. safepoint ()
72
+ GC. gc ()
73
73
end
74
- @test gradtest (m, x_224)
75
- GC. safepoint ()
76
- GC. gc ()
77
- end
78
74
end
79
75
80
76
GC. safepoint ()
81
77
GC. gc ()
82
78
83
79
@testset " GoogLeNet" begin
84
- m = GoogLeNet ()
85
- @test size (m (x_224)) == (1000 , 1 )
86
- @test_throws ArgumentError (GoogLeNet (pretrain = true ); true )
87
- @test gradtest (m, x_224)
80
+ m = GoogLeNet ()
81
+ @test size (m (x_224)) == (1000 , 1 )
82
+ @test_throws ArgumentError (GoogLeNet (pretrain = true ); true )
83
+ @test gradtest (m, x_224)
88
84
end
89
85
90
86
GC. safepoint ()
91
87
GC. gc ()
92
88
93
89
@testset " Inception3" begin
94
- m = Inception3 ()
95
- @test size (m (x_224)) == (1000 , 1 )
96
- @test_throws ArgumentError Inception3 (pretrain = true )
97
- @test gradtest (m, x_224)
90
+ m = Inception3 ()
91
+ @test size (m (x_224)) == (1000 , 1 )
92
+ @test_throws ArgumentError Inception3 (pretrain = true )
93
+ @test gradtest (m, x_224)
98
94
end
99
95
100
96
GC. safepoint ()
101
97
GC. gc ()
102
98
103
99
@testset " SqueezeNet" begin
104
- m = SqueezeNet ()
105
- @test size (m (x_224)) == (1000 , 1 )
106
- @test_throws ArgumentError (SqueezeNet (pretrain = true ); true )
107
- @test gradtest (m, x_224)
100
+ m = SqueezeNet ()
101
+ @test size (m (x_224)) == (1000 , 1 )
102
+ @test_throws ArgumentError (SqueezeNet (pretrain = true ); true )
103
+ @test gradtest (m, x_224)
108
104
end
109
105
110
106
GC. safepoint ()
111
107
GC. gc ()
112
108
113
109
@testset " DenseNet" begin
114
- @testset for sz in [121 , 161 , 169 , 201 ]
115
- m = DenseNet (sz)
116
-
117
- @test size (m (x_224)) == (1000 , 1 )
118
- if (DenseNet, sz) in PRETRAINED_MODELS
119
- @test (DenseNet (sz, pretrain = true ); true )
120
- else
121
- @test_throws ArgumentError DenseNet (sz, pretrain = true )
110
+ @testset for sz in [121 , 161 , 169 , 201 ]
111
+ m = DenseNet (sz)
112
+ @test size (m (x_224)) == (1000 , 1 )
113
+ if (DenseNet, sz) in PRETRAINED_MODELS
114
+ @test (DenseNet (sz, pretrain = true ); true )
115
+ else
116
+ @test_throws ArgumentError DenseNet (sz, pretrain = true )
117
+ end
118
+ @test gradtest (m, x_224)
119
+ GC. safepoint ()
120
+ GC. gc ()
122
121
end
123
- @test gradtest (m, x_224)
124
- GC. safepoint ()
125
- GC. gc ()
126
- end
127
122
end
128
123
129
124
GC. safepoint ()
130
125
GC. gc ()
131
126
132
127
@testset " MobileNet" verbose = true begin
133
- @testset " MobileNetv1" begin
134
- m = MobileNetv1 ()
135
-
136
- @test size (m (x_224)) == (1000 , 1 )
137
- if MobileNetv1 in PRETRAINED_MODELS
138
- @test (MobileNetv1 (pretrain = true ); true )
139
- else
140
- @test_throws ArgumentError MobileNetv1 (pretrain = true )
128
+ @testset " MobileNetv1" begin
129
+ m = MobileNetv1 ()
130
+ @test size (m (x_224)) == (1000 , 1 )
131
+ if MobileNetv1 in PRETRAINED_MODELS
132
+ @test (MobileNetv1 (pretrain = true ); true )
133
+ else
134
+ @test_throws ArgumentError MobileNetv1 (pretrain = true )
135
+ end
136
+ @test gradtest (m, x_224)
141
137
end
142
- @test gradtest (m, x_224)
143
- end
144
138
145
- GC. safepoint ()
146
- GC. gc ()
139
+ GC. safepoint ()
140
+ GC. gc ()
141
+
142
+ @testset " MobileNetv2" begin
143
+ m = MobileNetv2 ()
144
+ @test size (m (x_224)) == (1000 , 1 )
145
+ if MobileNetv2 in PRETRAINED_MODELS
146
+ @test (MobileNetv2 (pretrain = true ); true )
147
+ else
148
+ @test_throws ArgumentError MobileNetv2 (pretrain = true )
149
+ end
150
+ @test gradtest (m, x_224)
151
+ end
147
152
148
- @testset " MobileNetv2 " begin
149
- m = MobileNetv2 ()
153
+ GC . safepoint ()
154
+ GC . gc ()
150
155
151
- @test size (m (x_224)) == (1000 , 1 )
152
- if MobileNetv2 in PRETRAINED_MODELS
153
- @test (MobileNetv2 (pretrain = true ); true )
154
- else
155
- @test_throws ArgumentError MobileNetv2 (pretrain = true )
156
+ @testset " MobileNetv3" verbose = true begin
157
+ @testset for mode in [:small , :large ]
158
+ m = MobileNetv3 (mode)
159
+
160
+ @test size (m (x_224)) == (1000 , 1 )
161
+ if MobileNetv3 in PRETRAINED_MODELS
162
+ @test (MobileNetv3 (mode; pretrain = true ); true )
163
+ else
164
+ @test_throws ArgumentError MobileNetv3 (mode; pretrain = true )
165
+ end
166
+ @test gradtest (m, x_224)
167
+ end
156
168
end
157
- @test gradtest (m, x_224)
158
- end
159
-
160
- GC. safepoint ()
161
- GC. gc ()
162
-
163
- @testset " MobileNetv3" verbose = true begin
164
- @testset for mode in [:small , :large ]
165
- m = MobileNetv3 (mode)
166
-
167
- @test size (m (x_224)) == (1000 , 1 )
168
- if MobileNetv3 in PRETRAINED_MODELS
169
- @test (MobileNetv3 (mode; pretrain = true ); true )
170
- else
171
- @test_throws ArgumentError MobileNetv3 (mode; pretrain = true )
172
- end
173
- @test gradtest (m, x_224)
174
169
end
175
- end
176
- end
177
-
178
- GC. safepoint ()
179
- GC. gc ()
180
170
181
- @testset " ConvNeXt" verbose = true begin
182
- @testset for mode in [:small , :base , :large ] # :tiny, #, :xlarge]
183
- @testset for drop_path_rate in [0.0 , 0.5 ]
184
- m = ConvNeXt (mode; drop_path_rate)
171
+ GC. safepoint ()
172
+ GC. gc ()
185
173
186
- @test size (m (x_224)) == (1000 , 1 )
187
- @test gradtest (m, x_224)
188
- GC. safepoint ()
189
- GC. gc ()
190
- end
191
- end
174
+ @testset " ConvNeXt" verbose = true begin
175
+ @testset for mode in [:small , :base , :large ] # :tiny, #, :xlarge]
176
+ @testset for drop_path_rate in [0.0 , 0.5 ]
177
+ m = ConvNeXt (mode; drop_path_rate)
178
+ @test size (m (x_224)) == (1000 , 1 )
179
+ @test gradtest (m, x_224)
180
+ GC. safepoint ()
181
+ GC. gc ()
182
+ end
183
+ end
192
184
end
193
185
194
186
GC. safepoint ()
195
187
GC. gc ()
196
188
197
189
@testset " ConvMixer" verbose = true begin
198
- @testset for mode in [:small , :base , :large ]
199
- m = ConvMixer (mode)
190
+ @testset for mode in [:small , :base , :large ]
191
+ m = ConvMixer (mode)
200
192
201
- @test size (m (x_224)) == (1000 , 1 )
202
- @test gradtest (m, x_224)
203
- GC. safepoint ()
204
- GC. gc ()
205
- end
193
+ @test size (m (x_224)) == (1000 , 1 )
194
+ @test gradtest (m, x_224)
195
+ GC. safepoint ()
196
+ GC. gc ()
197
+ end
206
198
end
0 commit comments