Skip to content

CUDNNError: CUDNN_STATUS_BAD_PARAM (code 3) while training lstm neural network on GPU #1360

@VoSiLk

Description

@VoSiLk

CUDNNError: CUDNN_STATUS_BAD_PARAM occurs during training with gpu. Single evaluation of the loss works and training with cpu works as well. X is a vector of Array{Float32,2}(6,50) and and Y is Array{Float32,2}(1,1).

Julia version and packages:
Julia v1.5.2
Flux v0.11.1
CUDA v1.3.3

function prepare_time_series_data_4_flux(X,Y)
	num_batches = length(X)
	x = Vector{Array{Float32}}(undef, num_batches)
	y = Vector{Array{Float32}}(undef, num_batches)
	for i in 1:length(X)
		x[i] = Float32.(reshape(X[i], size(X[i],2), size(X[i], 1)))
		y[i] = Float32.(reshape(Y[i], size(Y[i], 2), size(Y[i], 1)))
	end

	return x, y
end

gpu_or_cpu  = gpu

X, Y = prepare_time_series_data_4_flux(X_train_batched, Y_train_batched)
X = X |> gpu_or_cpu
Y = Y |> gpu_or_cpu
data = (X, vcat(Y...))

X, Y = prepare_time_series_data_4_flux(X_val_batched, Y_val_batched)
X = X |> gpu_or_cpu
Y = Y |> gpu_or_cpu
data_test = (X, vcat(Y...))

opt = ADAM(0.001, (0.9, 0.999))

function loss(X,Y)
    Flux.reset!(model)
    mse_val = sum(abs2.(Y.-vcat(model.(X)...)[:, end]))
    return mse_val
end

model = Chain(LSTM(6, 70), LSTM(70, 70), LSTM(70, 70), Dense(70, 1, relu)) |> gpu_or_cpu
ps = Flux.params(model)
Flux.reset!(model)
loss(data...)

@time Flux.train!(loss, ps, [data], opt)

grafik

FluxML/NNlib.jl#237

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions