1
1
[ ![ Build Status] ( https://travis-ci.org/matthieugomez/InteractiveFixedEffectModels.jl.svg?branch=master )] ( https://travis-ci.org/matthieugomez/InteractiveFixedEffectModels.jl )
2
2
[ ![ Coverage Status] ( https://coveralls.io/repos/matthieugomez/InteractiveFixedEffectModels.jl/badge.svg?branch=master&service=github )] ( https://coveralls.io/github/matthieugomez/InteractiveFixedEffectModels.jl?branch=master )
3
3
4
+ ## Installation
5
+ The package is registered in the [ ` General ` ] ( https://github.com/JuliaRegistries/General ) registry and so can be installed at the REPL with
6
+
7
+ ` ] add InteractiveFixedEffectModels ` .
4
8
5
9
## Motivation
6
10
This package implements a novel, fast and robust algorithm to estimate interactive fixed effect models.
@@ -12,7 +16,7 @@ The definition of interactive fixed effects follows Bai (2009).Formally, denote
12
16
``` julia
13
17
using DataFrames, RDatasets, InteractiveFixedEffectModels
14
18
df = dataset (" plm" , " Cigar" )
15
- regife (df, @formula (Sales ~ Price + fe (State) + ife (State, Year, 2 )))
19
+ regife (df, @formula (Sales ~ Price + ife (State, Year, 2 ) + fe (State )))
16
20
# Linear Factor Model
17
21
#= ===============================================================
18
22
#Number of obs: 1380 Degree of freedom: 199
@@ -34,8 +38,8 @@ regife(df, @formula(Sales ~ Price + fe(State) + ife(State, Year, 2)))
34
38
- High-dimensional Fixed effects can be used, as in `fe(State)` but only for the variables specified in the factor model. See [FixedEffectModels.jl](https://github.com/matthieugomez/FixedEffectModels.jl) for more information
35
39
36
40
```julia
37
- regife(df, @formula(Sales ~ Price + ife(State, Year, 2)))
38
- regife(df, @formula(Sales ~ Price + ife(State, Year, 2) + fe(State)))
41
+ regife(df, @formula(Sales ~ Price + ife(State, Year, 2)))
42
+ regife(df, @formula(Sales ~ Price + ife(State, Year, 2) + fe(State)))
39
43
```
40
44
41
45
To construct formula programatically, use
@@ -113,10 +117,3 @@ In presence of cross or time correlation beyond the factor structure, the estima
113
117
- https://github.com/joidegn/FactorModels.jl : fits and predict factor models on matrices
114
118
- https://github.com/madeleineudell/LowRankModels.jl : fits general low rank approximations on matrices
115
119
- https://github.com/aaw/IncrementalSVD.jl: implementation of the backpropagation algorithm
116
-
117
- ## Install
118
-
119
- ```julia
120
- using Pkg
121
- Pkg.add("InteractiveFixedEffectModels")
122
- ```
0 commit comments