TimeStep = 0.005
+FinalTime = 20.0
+NumSteps = FinalTime/TimeStep
+IO_CheckSteps = 200
+IO_InfoSteps = 200
+IO_CFLSteps = 50
+Re = 1600
+Kinvis = 1/Re
+V0 = 1
+L = 1
+LZ = 2*PI
+HomModesZ = 128
+SVVCutoffRatio = 0.7
+SVVDiffCoeff = 0.1
+eJx1mmOwHAYURl9s27Ya23Zj225QK0VS205q20xt201t23/O6Uy+mfbPmT19zdvsnt25904LCnb9pxAsDIv8jy8Ki8Hi8e/1JWBJWCr+XH1pWAaWjd+jLwfLwwrx+/QVYSVYOZ6nvgqsCqvF89ZXhzVgzXj++lqwNqwDS4WvC+vB+rB0+AawIWwEy4RvDJvAprBs+GawOWwBy4VvCVvB1rB8+DawLWwHK4RvDzvA3aDvU0fYCXaGdlcpfBfYFdpJ5fDdYHfo+1olfA/YE/o+VA3fC/aGvm7VwveBfaF/z+rh+8H+8bxqhB8AB8afUzP8IDgY1grqh8Ch0B5rhx8Gh0N7rBN+BBwJ7bFu+FFwNLTHeuHHwLHQHuuHHwfHQ3tsEH53OAHaY0M4EU6Ck6E9Ngo/BU6F9tg4/DQ4Hdpjk/Az4Exoj03Dz4KzoT02Cz8HzoX22Dz8PDgf2mOL8AvgQjgAtgy/CC6G9tgq/BK4FNpj6/DL4HJoj23Cr4AroT22Db8Krob22C78GrgW2mP78OvgHtAeO4RfDzdAe/R7cCPcBPeE9tgx/F5wb2iPncLvA/eF9tg5/H5wf2iPXcIfAA+E9tg1/EHwYGiP3cJvhodAe+we/lB4GLTHHuEPh1ugPfYMvxUeAe2xV/gj4VHQHnuHPxoeA+2xT/hj4XHQHvuGPx6eAO2xX/gT4UnQHvuHPxmeAu1xADwVngZPh/Y4MPwZ8Exoj4PCnwXPhvY4OPw58Fxoj0PCnwfPh/Y4NPwFcBu0x2Hht8ML4WY4PPxF8GJojyPCXwIvhfY4Mvxl8HJoj6PCXwGvhPY4OvxV8Gpoj2PCXwOvhfY4Nvx18Hpoj+PC3wBvhPY4PvxN8GZoj34P3gJvhbdBe5wQ/nZ4B7THieHvhHdBe5wU/m54D7THyeHvhfdBe5wSfge8H9rj1PAPwAehPU4L/xB8GNrj9PCPwEehPc4I/xh8HNrjzPBPwCehPc4K/xR8Gtrj7PDPwGehPc4J/xx8Htrj3PAvwBehPc4L/xJ8GdrjfPgKfBW+Bu1xQfjX4RvQHheGfxO+Be1xUfi34TvQHheHfxe+B+1xSfid8H24Ay4N/wH8ENrjsvAfwY+hPS4P/wn8FNrjivCfwc+hPa4M/wX8EtrjqvBfwa+hPa4O/w38FtrjmvDfwe+hPa4N/wP8EdrjuvA/wZ+hPTof/gJ/hb9Be1wf/nf4B7THDeH/hH9Be9wY/m/4D7THTeFdyAtBe3Qu1ReGRaA9Oifoi8Ji0B6dX/XFYQloj84T+pKwFLRH51x9aVgG2qNzh74sLAft0XlYXx5WgPbofKKvCCtBe3Ru1leGVaA9Osfoq8Jq0B6dr/XVYQ1oj5thTXwtWBvao3O4vg6sC+3RuUhfD9aH9ui8rm8AG0J7dH7SN4KNPQxB53p9E9g0enTO0jeDzaNH5399C9gyenQe07eCraNH9wR9G9g2enRu07eD7aNH9wl9B7hb9Oh8p+8IO0WP7h36zrBL9OgcqO8Ku0WP7if67rBH9Oi82JPHvWDv6NE9Rt8H9o0enSv1/WD/6NE9SD8ADowe3Yv0g+Dg6NE5VT8EDo0e3Z/0w+Dw6NF5Vj8Cjowe3bP0o+Do6NG5Vz8Gjo0e3cf04+D46NH5WL87nBA9urfpJ8JJ0aNztH4ynBI9ut/pp8Jp0aPztn46nBE9buPnZvJ4FpwdPW4v2NXPgXOjR/dF/Tw4P3p0ftcvgAujR/dK/SK4OHp0ztcvgUujR/dP/TK4PHp0H9CvgCujR/dU/Sq4Onp0b9CvgWujR/dZ/Tq4R/TofqFfDzdEj+69+o1wU/ToHqLfE+4VPbof6/eG+0SP7iv6feF+0aN79P48PgAeGD261+gPggdHj+7b+s3wkOjR/Ud/KDwsenRf1x8Ot0SP7u/6rfCI6NF9Sn8kPCp6dM/XHw2PiR7du/THwuOiR+8B+uPhCdGj+5n+RHhS9OjdQH8yPCV6dI/TnwpPix69L+hPh2dEj+57+jPhWdGjdwj92fCc6HEHP3cuj8+D50eP9xfs6i+A26JH90f9dnhh9OhdQ3+R33fRo3um/hK/x6JH7x/6y/x+ih7dR/VX+L0TPXon0V/l90n06N6qv8bviejRe4r+Oj//0aP7rf4GP9fRo3cX/U1+XqNH92D9LX4Oo0fvM/rb/HxFj+7L+jv83ESP3nH0d/l5iB7dq++xb/uNHr336HfYZfTo/q1/wN6iR+9C+ofsKHp0T9c/Yh/Ro3cl/WO+79Gjdyb9E76f0aN7v/4p36fo0XuU/hlf/+jR+4D+OV/X6NG7lf4FX6/o0TuC/iVfh+jR+5b+Ff9+0aP3Bv1rPu/o0TuY/g2fT/ToXUL/lr8nenyPn3vH/04fPe4s2NXvhO9Hj97V9B/AD6PH/+5uPP4Ifhw9en/TfwI/jR69h+g/g59Hj97p9F/AL6NH7yb6r+DX0aP3PP038Nvo0fuK/jv4ffTo3U//A/wxevQOo/8J/hw9eh/U/wJ/jR691+h/g79Hj94R9X/AP6NH7zr6v+Df0aP3xn947P9AVQjao/cffWFYBNqjd0l9UVgM2qN3In1xWALao/dLfUlYCtqj9yR9aVgG2qP3T31ZWA7ao/dQfXlYAdqj9yl9RVgJ2qN3U31lWAXao3csfVVYDdqj91V9dVgD2qP3Ln1NWAvao3dYfW1YB9qjdzF9XVgP2qP3Wn192ADa47//PXBm+