From 2f7ab8ac9a626c3b684b77e71d0c9c24a56ecaa5 Mon Sep 17 00:00:00 2001 From: BODF <44000799+BODF@users.noreply.github.com> Date: Thu, 6 Dec 2018 12:20:24 -0500 Subject: [PATCH] Fixed Sign Error and Minor Typo For the section labeled "Interpretation of the coeficient", fixed a sign error on line 250 (compare to line 249) and corrected title to be "...coefficient". --- 07_RegressionModels/02_01_multivariate/index.Rmd | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/07_RegressionModels/02_01_multivariate/index.Rmd b/07_RegressionModels/02_01_multivariate/index.Rmd index 2a8ccbce8..cbf50f0c8 100644 --- a/07_RegressionModels/02_01_multivariate/index.Rmd +++ b/07_RegressionModels/02_01_multivariate/index.Rmd @@ -242,12 +242,12 @@ coef(lm(y ~ x + x2 + x3 - 1)) #the -1 removes the intercept term --- -## Interpretation of the coeficient +## Interpretation of the coefficient $$E[Y | X_1 = x_1, \ldots, X_p = x_p] = \sum_{k=1}^p x_{k} \beta_k$$ So that $$ E[Y | X_1 = x_1 + 1, \ldots, X_p = x_p] - E[Y | X_1 = x_1, \ldots, X_p = x_p]$$ -$$= (x_1 + 1) \beta_1 + \sum_{k=2}^p x_{k}+ \sum_{k=1}^p x_{k} \beta_k = \beta_1 $$ +$$= (x_1 + 1) \beta_1 + \sum_{k=2}^p x_{k} - \sum_{k=1}^p x_{k} \beta_k = \beta_1 $$ So that the interpretation of a multivariate regression coefficient is the expected change in the response per unit change in the regressor, holding all of the other regressors fixed. In the next lecture, we'll do examples and go over context-specific