Skip to content

Commit 784a6fb

Browse files
committed
Update Docs.
1 parent 13c8229 commit 784a6fb

File tree

8 files changed

+101
-33
lines changed

8 files changed

+101
-33
lines changed

docs/en_US/source/conf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
author = 'DataCanvas.com'
2424

2525
# The full version, including alpha/beta/rc tags
26-
release = '0.1.0'
26+
release = '0.1.3'
2727

2828

2929
# -- General configuration ---------------------------------------------------

docs/en_US/source/contents/0600_custom_functions.rst

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -91,9 +91,6 @@ HyperTS provides various algorithms with default search space for every mode. Mo
9191

9292
By setting the argument ``search_space``, users could define their own search space. The instructions and an example are given below to modify the ``StatsForecastSearchSpace``.
9393

94-
- Mandatory! Describe the exact name of the task. For instance, ``task='univariate-forecast'``;
95-
- Mandatory! Assign the name of the ``timestamp`` column;
96-
- Mandatory! If have the covariables, describe them clearly. For instance, ``covariables={xxx: xxx, ...}``;
9794
- Set the argument as false to disable a certain algorithm. For instance, ``enable_arima=False``;
9895
- Change the initial parameters of a certain algorithm by function ``prophet_init_kwargs={xxx:xxx, ...}``;
9996
- Import the argument ``Choice``, ``Int`` ``Real`` from ``hypernets.core.search_space`` could define the parameters with specific options. For instance, ``Choice`` supports the boolean data type. ``Real`` supports the floating data type.
@@ -106,11 +103,8 @@ Code example:
106103
from hypernets.core.search_space import Choice, Int, Real
107104
from hyperts.framework.search_space.macro_search_space import StatsForecastSearchSpace
108105
109-
custom_search_space = StatsForecastSearchSpace(task='univariate-forecast',
110-
timestamp='TimeStamp',
111-
covariables=['HourSin', 'WeekCos', 'CBWD'],
112-
enable_arima=False,
113-
prophet_init_kwargs={
106+
custom_search_space = StatsForecastSearchSpace(enable_arima=False,
107+
prophet_init_kwargs={
114108
'seasonality_mode': 'multiplicative',
115109
'daily_seasonality': Choice([True, False]),
116110
'n_changepoints': Int(10, 50, step=10),
@@ -374,10 +368,7 @@ Add the estimator to the search space, in which the hyperparameters also could b
374368
df = load_network_traffic(univariate=True)
375369
train_data, test_data = train_test_split(df, test_size=168, shuffle=False)
376370
377-
custom_search_space = DLForecastSearchSpacePlusTransformer(task='univariate-forecast',
378-
timestamp='TimeStamp',
379-
covariables=['HourSin', 'WeekCos', 'CBWD'],
380-
metrics=['mape'])
371+
custom_search_space = DLForecastSearchSpacePlusTransformer()
381372
382373
experiment = make_experiment(train_data,
383374
task='univariate-forecast',

docs/en_US/source/contents/0700_models.rst

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -155,4 +155,11 @@ For more information, please refer to the paper `Modeling Long- and Short-Term T
155155

156156
Neural Architecture Search
157157
*************
158-
...
158+
Since AlexNet won the 2012 ImageNet competition, deep learning has made breakthroughs in many challenging tasks and fields. In addition to AlexNet,
159+
e.g., VGG, Inception, ResNet, Transformer, GPT and so on have been proposed and widely used in industry and academia. And then, behind all these great networks,
160+
it is the crystallization of the experience of countless human experts. Consequently, neural architecture search (NAS) has emerged as a promising tool to alleviate human efforts in this trial-and-error design process.
161+
162+
HyperTS relies on the basic capabilities provided by Hypernets (``Hpyer Model`` + ``Search Strategy`` + ``Estimation Strategy``), to build ``Search Space`` for time series tasks based on NAS powerful expression capabilities.
163+
164+
.. tip::
165+
NAS is applied to uni/multi-variate forecasting and regression.

docs/en_US/source/contents/0800_release_note.rst

Lines changed: 37 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,4 +79,40 @@ Details of the HypertTS update are as follows:
7979

8080
- Optimizes search space and architecture.
8181

82-
- Fixes some bugs.
82+
- Fixes some bugs.
83+
84+
85+
Version 0.1.3
86+
******************
87+
88+
Details of the HypertTS update are as follows:
89+
90+
- Tuning search space hyperparameters;
91+
92+
- Added report_best_trial_params;
93+
94+
- Fixed ARIMA to be compatible with version 0.12.1 and above;
95+
96+
- Fixed the pt issue of LSTNet;
97+
98+
- Simplified custom search space, task, timestamp, covariables and metircs can not be passed;
99+
100+
- Added OutliersTransformer, supported dynamic handling of outliers;
101+
102+
- Adjusted final train processing - lr, batch_size, epcochs and so on;
103+
104+
- Added time series meta-feature extractor;
105+
106+
- Added Time2Vec, RevIN, etc. layers;
107+
108+
- Added N-Beats time series forecasting model;
109+
110+
- Added InceptionTime time series classification model;
111+
112+
- Supported dynamic downsampling for time series forecasting;
113+
114+
- Refactored positive label inference method;
115+
116+
- Added neural architecture search mode;
117+
118+
- Fixed some known issues.

docs/zh_CN/source/conf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
author = 'DataCanvas.com'
2424

2525
# The full version, including alpha/beta/rc tags
26-
release = '0.1.0'
26+
release = '0.1.3'
2727

2828

2929
# -- General configuration ---------------------------------------------------

docs/zh_CN/source/contents/0600_user_defined.rst

Lines changed: 3 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -93,10 +93,6 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:
9393

9494
假如现在我们想修改预测任务下的统计模式的搜索空间, 即 ``StatsForecastSearchSpace``, 您可以做如下操作:
9595

96-
- 详细指定任务类型 ``task``, 否则无法判断是单变量预测还是多变量预测任务;
97-
- 指定 ``timestamp`` 列名;
98-
- 如果数据存在协变量, 请设置参数 ``covariables={xxx: xxx, ...}``;
99-
- **以上三步请严格遵守, 否则自定义失败!**
10096
- 如果想禁止某个算法, 不进行搜索, 可以设置参数为False, 例如 ``enable_arima=False``;
10197
- 如果想更改某个算法的搜索空间参数初始化,可以传递参数 ``xxx_init_kwargs={xxx:xxx, ...}``;
10298
- 如果希望自定义的参数是可搜索的, 您可以使用 ``hypernets.core.search_space`` 中的 ``Choice``, ``Int`` 及 ``Real``。其中, ``Choice`` 支持离散值, ``Int`` 支持整数连续值, ``Real`` 支持浮点数连续值。详情可参考 `Search Space <https://github.com/DataCanvasIO/Hypernets/blob/master/hypernets/core/search_space.py>`_。
@@ -108,11 +104,8 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:
108104
from hypernets.core.search_space import Choice, Int, Real
109105
from hyperts.framework.search_space.macro_search_space import StatsForecastSearchSpace
110106
111-
custom_search_space = StatsForecastSearchSpace(task='univariate-forecast',
112-
timestamp='TimeStamp',
113-
covariables=['HourSin', 'WeekCos', 'CBWD'],
114-
enable_arima=False,
115-
prophet_init_kwargs={
107+
custom_search_space = StatsForecastSearchSpace(enable_arima=False,
108+
prophet_init_kwargs={
116109
'seasonality_mode': 'multiplicative',
117110
'daily_seasonality': Choice([True, False]),
118111
'n_changepoints': Int(10, 50, step=10),
@@ -378,10 +371,7 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:
378371
df = load_network_traffic(univariate=True)
379372
train_data, test_data = train_test_split(df, test_size=168, shuffle=False)
380373
381-
custom_search_space = DLForecastSearchSpacePlusTransformer(task='univariate-forecast',
382-
timestamp='TimeStamp',
383-
covariables=['HourSin', 'WeekCos', 'CBWD'],
384-
metrics=['mape'])
374+
custom_search_space = DLForecastSearchSpacePlusTransformer()
385375
386376
experiment = make_experiment(train_data,
387377
task='univariate-forecast',

docs/zh_CN/source/contents/0700_models.rst

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -134,10 +134,18 @@ LSTNet全称为长短时序网络(Long-and Short-term Time-series network, LSTNe
134134
详情可参看: `Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks <https://arxiv.org/abs/1703.07015>`_
135135

136136
.. tip::
137-
适用范围: 单/多变量时序预测,回归。
137+
适用范围: 单/多变量时序预测, 回归。
138138

139139
--------
140140

141141
神经架构搜索
142142
*************
143-
...
143+
自AlexNet在2012年的ImageNet竞赛中获得冠军, 深度学习在许多具有挑战性的任务及领域取得了突破性的进展。除了AlexNet网络外,
144+
比如VGG,Inception, ResNet, Transformer, GPT等也先后被提出并得到工业界及学术界广泛的应用。然后, 这众多优秀网络的背后,
145+
凝聚的是无数人类专家的经验结晶。因此, 神经体系结构搜索(NAS)已经成为一种有希望的工具,以减轻人类在这种试错设计过程中的努力。
146+
147+
HyperTS依托Hypernets提供的基础能力(``Hpyer Model`` + ``Search Strategy`` + ``Estimation Strategy``), 构建了基于时间
148+
序列的 ``Search Space``, 为时间序列任务赋予NAS强大的表达能力。
149+
150+
.. tip::
151+
适用范围: 单/多变量时序预测, 回归。

docs/zh_CN/source/contents/0800_release_note.rst

Lines changed: 38 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ HyperTS是一款涵盖自动机器学习(AutoML)与自动深度学习(AutoDL)的
3636
版本 0.1.2.1
3737
**************
3838

39-
HyperTS本次更新细节如下
39+
HyperTS本次更新细节如下:
4040

4141
- 新增交叉验证策略;
4242

@@ -52,4 +52,40 @@ HyperTS本次更新细节如下:
5252

5353
- 支持傅里叶时序周期推断;
5454

55-
- 优化搜索空间及参数。
55+
- 优化搜索空间及参数。
56+
57+
58+
版本 0.1.3
59+
**************
60+
61+
HyperTS本次更新细节如下:
62+
63+
- 调整搜索空间超参数;
64+
65+
- 增加实验执行结束报告最佳试验的参数;
66+
67+
- 修复ARIMA以兼容0.12.1及以上版本;
68+
69+
- 修复LSTNet的pt的问题;
70+
71+
- 简化自定义搜索空间, 可不传参task, timestamp, covariables和metircs;
72+
73+
- 新增 OutliersTransformer, 支持动态处理异常值;
74+
75+
- 调整finaltrain - lr, batch_size, epcochs等;
76+
77+
- 新增时间序列元特征提取器;
78+
79+
- 新增Time2Vec、RevIN等时间处理层;
80+
81+
- 新增N-Beats时序预测模型;
82+
83+
- 新增InceptionTime时序分类模型;
84+
85+
- 支持时序预测动态下采样;
86+
87+
- 重构正标签推断方法;
88+
89+
- 新增神经架构搜索模型;
90+
91+
- 修复了一些已知问题。

0 commit comments

Comments
 (0)