-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathregion_modality.cpp
1018 lines (899 loc) · 37.6 KB
/
region_modality.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: MIT
// Copyright (c) 2021 Manuel Stoiber, German Aerospace Center (DLR)
#include <srt3d/region_modality.h>
namespace srt3d {
RegionModality::RegionModality(const std::string &name,
std::shared_ptr<Body> body_ptr,
std::shared_ptr<Model> model_ptr,
std::shared_ptr<Camera> camera_ptr)
: name_{name},
body_ptr_{std::move(body_ptr)},
model_ptr_{std::move(model_ptr)},
camera_ptr_{std::move(camera_ptr)} {
tikhonov_matrix_.setZero();
tikhonov_matrix_.diagonal().head<3>().array() = tikhonov_parameter_rotation_;
tikhonov_matrix_.diagonal().tail<3>().array() =
tikhonov_parameter_translation_;
}
bool RegionModality::SetUp() {
set_up_ = false;
// Check if all required objects are set up
if (!model_ptr_->set_up()) {
std::cerr << "Model " << model_ptr_->name() << " was not set up"
<< std::endl;
return false;
}
if (!camera_ptr_->set_up()) {
std::cerr << "Camera " << camera_ptr_->name() << " was not set up"
<< std::endl;
return false;
}
if (use_occlusion_handling_ && !occlusion_renderer_ptr_->set_up()) {
std::cerr << "Occlusion renderer " << occlusion_renderer_ptr_->name()
<< " was not set up" << std::endl;
return false;
}
PrecalculateFunctionLookup();
PrecalculateDistributionVariables();
PrecalculateHistogramBinVariables();
PrecalculateBodyVariables();
PrecalculateCameraVariables();
SetImshowVariables();
set_up_ = true;
return true;
}
void RegionModality::set_n_lines(int n_lines) { n_lines_ = n_lines; }
void RegionModality::set_function_amplitude(float function_amplitude) {
function_amplitude_ = function_amplitude;
set_up_ = false;
}
void RegionModality::set_function_slope(float function_slope) {
function_slope_ = function_slope;
set_up_ = false;
}
void RegionModality::set_learning_rate(float learning_rate) {
learning_rate_ = learning_rate;
}
void RegionModality::set_function_length(int function_length) {
function_length_ = function_length;
set_up_ = false;
}
void RegionModality::set_distribution_length(int distribution_length) {
distribution_length_ = distribution_length;
set_up_ = false;
}
void RegionModality::set_scales(const std::vector<int> &scales) {
scales_ = scales;
}
void RegionModality::set_n_newton_iterations(int n_newton_iterations) {
n_newton_iterations_ = n_newton_iterations;
}
void RegionModality::set_min_continuous_distance(
float min_continuous_distance) {
min_continuous_distance_ = min_continuous_distance;
}
bool RegionModality::set_n_histogram_bins(int n_histogram_bins) {
switch (n_histogram_bins) {
case 2:
histogram_bitshift_ = 7;
break;
case 4:
histogram_bitshift_ = 6;
break;
case 8:
histogram_bitshift_ = 5;
break;
case 16:
histogram_bitshift_ = 4;
break;
case 32:
histogram_bitshift_ = 3;
break;
case 64:
histogram_bitshift_ = 2;
break;
default:
std::cerr << "n_histogram_bins = " << n_histogram_bins << " not valid. "
<< "Has to be of value 2, 4, 8, 16, 32, or 64" << std::endl;
return false;
}
n_histogram_bins_ = n_histogram_bins;
set_up_ = false;
return true;
}
void RegionModality::set_learning_rate_f(float learning_rate_f) {
learning_rate_f_ = learning_rate_f;
}
void RegionModality::set_learning_rate_b(float learning_rate_b) {
learning_rate_b_ = learning_rate_b;
}
void RegionModality::set_unconsidered_line_length(
float unconsidered_line_length) {
unconsidered_line_length_ = unconsidered_line_length;
}
void RegionModality::set_considered_line_length(float considered_line_length) {
considered_line_length_ = considered_line_length;
}
void RegionModality::set_tikhonov_parameter_rotation(
float tikhonov_parameter_rotation) {
tikhonov_parameter_rotation_ = tikhonov_parameter_rotation;
tikhonov_matrix_.diagonal().head<3>().array() = tikhonov_parameter_rotation_;
}
void RegionModality::set_tikhonov_parameter_translation(
float tikhonov_parameter_translation) {
tikhonov_parameter_translation_ = tikhonov_parameter_translation;
tikhonov_matrix_.diagonal().tail<3>().array() =
tikhonov_parameter_translation_;
}
void RegionModality::UseOcclusionHandling(
std::shared_ptr<OcclusionRenderer> occlusion_renderer_ptr) {
occlusion_renderer_ptr_ = std::move(occlusion_renderer_ptr);
use_occlusion_handling_ = true;
set_up_ = false;
}
void RegionModality::DoNotUseOcclusionHandling() {
occlusion_renderer_ptr_ = nullptr;
use_occlusion_handling_ = false;
set_up_ = false;
}
void RegionModality::set_display_visualization(bool display_visualization) {
display_visualization_ = display_visualization;
}
void RegionModality::StartSavingVisualizations(
const std::filesystem::path &save_directory) {
save_visualizations_ = true;
save_directory_ = save_directory;
}
void RegionModality::StopSavingVisualizations() {
save_visualizations_ = false;
}
void RegionModality::set_visualize_lines_correspondence(
bool visualize_lines_correspondence) {
visualize_lines_correspondence_ = visualize_lines_correspondence;
SetImshowVariables();
}
void RegionModality::set_visualize_points_occlusion_mask_correspondence(
bool visualize_points_occlusion_mask_correspondence) {
visualize_points_occlusion_mask_correspondence_ =
visualize_points_occlusion_mask_correspondence;
SetImshowVariables();
}
void RegionModality::set_visualize_points_pose_update(
bool visualize_points_pose_update) {
visualize_points_pose_update_ = visualize_points_pose_update;
SetImshowVariables();
}
void RegionModality::set_visualize_points_histogram_image_pose_update(
bool visualize_points_histogram_image_pose_update) {
visualize_points_histogram_image_pose_update_ =
visualize_points_histogram_image_pose_update;
SetImshowVariables();
}
void RegionModality::set_visualize_points_result(bool visualize_points_result) {
visualize_points_result_ = visualize_points_result;
SetImshowVariables();
}
void RegionModality::set_visualize_points_histogram_image_result(
bool visualize_points_histogram_image_result) {
visualize_points_histogram_image_result_ =
visualize_points_histogram_image_result;
SetImshowVariables();
}
bool RegionModality::StartModality() {
if (!IsSetup()) return false;
// Initialize histograms
PrecalculatePoseVariables();
AddLinePixelColorsToTempHistograms();
if (CalculateHistogram(1.0f, temp_histogram_f_, &histogram_f_) &&
CalculateHistogram(1.0f, temp_histogram_b_, &histogram_b_)) {
return true;
} else {
std::cerr << "Histograms could not be initialised for modality " << name_
<< std::endl;
return false;
}
}
bool RegionModality::CalculateBeforeCameraUpdate() {
if (!IsSetup()) return false;
PrecalculatePoseVariables();
AddLinePixelColorsToTempHistograms();
CalculateHistogram(learning_rate_f_, temp_histogram_f_, &histogram_f_);
CalculateHistogram(learning_rate_b_, temp_histogram_b_, &histogram_b_);
return true;
}
bool RegionModality::CalculateCorrespondences(int corr_iteration) {
if (!IsSetup()) return false;
PrecalculatePoseVariables();
PrecalculateScaleDependentVariables(corr_iteration);
if (use_occlusion_handling_) occlusion_renderer_ptr_->FetchOcclusionMask();
// Search closest template view
const Model::TemplateView *template_view;
model_ptr_->GetClosestTemplateView(body2camera_pose_, &template_view);
// Iterate over n_lines
std::vector<float> segment_probabilities_f(line_length_in_segments_);
std::vector<float> segment_probabilities_b(line_length_in_segments_);
data_lines_.clear();
for (auto data_point = begin(template_view->data_points);
data_point != begin(template_view->data_points) + n_lines_;
++data_point) {
DataLine data_line;
CalculateBasicLineData(*data_point, &data_line);
if (!IsLineValid(data_line.center_u, data_line.center_v,
data_line.continuous_distance))
continue;
if (!CalculateSegmentProbabilities(
data_line.center_u, data_line.center_v, data_line.normal_u,
data_line.normal_v, &segment_probabilities_f,
&segment_probabilities_b, &data_line.normal_component_to_scale,
&data_line.delta_r))
continue;
CalculateDistribution(segment_probabilities_f, segment_probabilities_b,
&data_line.distribution);
CalculateDistributionMoments(data_line.distribution, &data_line.mean,
&data_line.standard_deviation,
&data_line.variance);
data_lines_.push_back(std::move(data_line));
}
return true;
}
bool RegionModality::VisualizeCorrespondences(int save_idx) {
if (!IsSetup()) return false;
if (visualize_lines_correspondence_)
VisualizeLines("lines_correspondence", save_idx);
if (visualize_points_occlusion_mask_correspondence_ &&
use_occlusion_handling_)
VisualizePointsOcclusionMask("occlusion_mask_correspondence", save_idx);
return true;
}
bool RegionModality::CalculatePoseUpdate(int corr_iteration,
int update_iteration) {
if (!IsSetup()) return false;
PrecalculatePoseVariables();
Eigen::Matrix<float, 6, 1> gradient;
Eigen::Matrix<float, 6, 6> hessian;
gradient.setZero();
hessian.setZero();
probability_ = 0;
// Iterate over correspondence lines
for (auto &data_line : data_lines_) {
// Calculate point coordinates in camera frame
data_line.center_f_camera = body2camera_pose_ * data_line.center_f_body;
float x = data_line.center_f_camera(0);
float y = data_line.center_f_camera(1);
float z = data_line.center_f_camera(2);
// Calculate delta_cs
float fu_z = fu_ / z;
float fv_z = fv_ / z;
float xfu_z = x * fu_z;
float yfv_z = y * fv_z;
float delta_cs = (data_line.normal_u * (xfu_z + ppu_ - data_line.center_u) +
data_line.normal_v * (yfv_z + ppv_ - data_line.center_v) -
data_line.delta_r) *
data_line.normal_component_to_scale;
// Calculate first derivative of loglikelihood with respect to delta_cs
float dloglikelihood_ddelta_cs;
if (update_iteration < n_newton_iterations_) {
dloglikelihood_ddelta_cs =
(data_line.mean - delta_cs) / data_line.variance;
} else {
// Calculate distribution indexes
// Note: (distribution_length - 1) / 2 + 1 = (distribution_length + 1) / 2
int dist_idx_upper = int(delta_cs + distribution_length_plus_1_half_);
int dist_idx_lower = dist_idx_upper - 1;
if (dist_idx_lower < 0 || dist_idx_upper >= distribution_length_)
continue;
dloglikelihood_ddelta_cs =
(std::log(data_line.distribution[dist_idx_upper]) -
std::log(data_line.distribution[dist_idx_lower])) *
learning_rate_ / data_line.variance;
}
// Calculate first order derivative of delta_cs with respect to theta
Eigen::RowVector3f ddelta_cs_dcenter{
data_line.normal_component_to_scale * data_line.normal_u * fu_z,
data_line.normal_component_to_scale * data_line.normal_v * fv_z,
data_line.normal_component_to_scale *
(-data_line.normal_u * xfu_z - data_line.normal_v * yfv_z) / z};
Eigen::RowVector3f ddelta_cs_dtranslation{ddelta_cs_dcenter *
body2camera_rotation_};
Eigen::Matrix<float, 1, 6> ddelta_cs_dtheta;
ddelta_cs_dtheta << data_line.center_f_body.transpose().cross(
ddelta_cs_dtranslation),
ddelta_cs_dtranslation;
// Calculate gradient and hessian
gradient += dloglikelihood_ddelta_cs * ddelta_cs_dtheta.transpose();
ddelta_cs_dtheta /= data_line.standard_deviation;
hessian.triangularView<Eigen::Lower>() -=
ddelta_cs_dtheta.transpose() * ddelta_cs_dtheta;
probability_ += data_line.distribution[distribution_length_plus_1_half_];
}
hessian = hessian.selfadjointView<Eigen::Lower>();
probability_ /= std::max(int(data_lines_.size()), 1); // mean probability
// Optimize and update pose
Eigen::FullPivLU<Eigen::Matrix<float, 6, 6>> lu{tikhonov_matrix_ - hessian};
if (lu.isInvertible()) {
Eigen::Matrix<float, 6, 1> theta{lu.solve(gradient)};
Transform3fA pose_variation{Transform3fA::Identity()};
pose_variation.rotate(Vector2Skewsymmetric(theta.head<3>()).exp());
pose_variation.translate(theta.tail<3>());
body_ptr_->set_body2world_pose(body_ptr_->body2world_pose() *
pose_variation);
}
return true;
}
bool RegionModality::VisualizePoseUpdate(int save_idx) {
if (!IsSetup()) return false;
if (visualize_points_pose_update_) {
UpdateLineCentersWithCurrentPose();
VisualizePointsCameraImage("camera_image_pose_update", save_idx);
}
if (visualize_points_histogram_image_pose_update_) {
UpdateLineCentersWithCurrentPose();
VisualizePointsHistogramImage("histogram_image_pose_update", save_idx);
}
return true;
}
bool RegionModality::VisualizeResults(int save_idx) {
if (!IsSetup()) return false;
if (visualize_points_result_) {
UpdateLineCentersWithCurrentPose();
VisualizePointsCameraImage("camera_image_result", save_idx);
}
if (visualize_points_histogram_image_result_) {
UpdateLineCentersWithCurrentPose();
VisualizePointsHistogramImage("histogram_image_result", save_idx);
}
return true;
}
const std::string &RegionModality::name() const { return name_; }
std::shared_ptr<Body> RegionModality::body_ptr() const { return body_ptr_; }
std::shared_ptr<Model> RegionModality::model_ptr() const { return model_ptr_; }
std::shared_ptr<Camera> RegionModality::camera_ptr() const {
return camera_ptr_;
}
std::shared_ptr<OcclusionRenderer> RegionModality::occlusion_renderer_ptr()
const {
return occlusion_renderer_ptr_;
}
bool RegionModality::imshow_correspondence() const {
return imshow_correspondence_;
}
bool RegionModality::imshow_pose_update() const { return imshow_pose_update_; }
bool RegionModality::imshow_result() const { return imshow_result_; }
bool RegionModality::set_up() const { return set_up_; }
void RegionModality::PrecalculateFunctionLookup() {
function_lookup_f_.resize(function_length_);
function_lookup_b_.resize(function_length_);
for (int i = 0; i < function_length_; ++i) {
float x = float(i) - float(function_length_ - 1) / 2.0f;
if (function_slope_ == 0.0f)
function_lookup_f_[i] =
0.5f - function_amplitude_ * ((0.0f < x) - (x < 0.0f));
else
function_lookup_f_[i] =
0.5f - function_amplitude_ * std::tanh(x / (2.0f * function_slope_));
function_lookup_b_[i] = 1.0f - function_lookup_f_[i];
}
}
void RegionModality::PrecalculateDistributionVariables() {
line_length_in_segments_ = function_length_ + distribution_length_ - 1;
distribution_length_minus_1_half_ =
(float(distribution_length_) - 1.0f) / 2.0f;
distribution_length_plus_1_half_ =
(float(distribution_length_) + 1.0f) / 2.0f;
float min_variance_laplace =
1.0f / (2.0f * powf(std::atanhf(2.0f * function_amplitude_), 2.0f));
float min_variance_gaussian = function_slope_;
min_variance_ = std::max(min_variance_laplace, min_variance_gaussian);
}
void RegionModality::PrecalculateHistogramBinVariables() {
n_histogram_bins_squared_ = pow_int(n_histogram_bins_, 2);
n_histogram_bins_cubed_ = pow_int(n_histogram_bins_, 3);
temp_histogram_f_.resize(n_histogram_bins_cubed_);
temp_histogram_b_.resize(n_histogram_bins_cubed_);
histogram_f_.resize(n_histogram_bins_cubed_);
histogram_b_.resize(n_histogram_bins_cubed_);
}
void RegionModality::SetImshowVariables() {
imshow_correspondence_ = visualize_lines_correspondence_ ||
(visualize_points_occlusion_mask_correspondence_ &&
use_occlusion_handling_);
imshow_pose_update_ = visualize_points_pose_update_ ||
visualize_points_histogram_image_pose_update_;
imshow_result_ =
visualize_points_result_ || visualize_points_histogram_image_result_;
}
void RegionModality::PrecalculateBodyVariables() {
if (use_occlusion_handling_)
encoded_occlusion_id_ = (uchar(1) << unsigned(body_ptr_->occlusion_id()));
}
void RegionModality::PrecalculateCameraVariables() {
fu_ = camera_ptr_->intrinsics().fu;
fv_ = camera_ptr_->intrinsics().fv;
ppu_ = camera_ptr_->intrinsics().ppu;
ppv_ = camera_ptr_->intrinsics().ppv;
image_width_minus_1_ = camera_ptr_->image().cols - 1;
image_height_minus_1_ = camera_ptr_->image().rows - 1;
image_width_minus_2_ = camera_ptr_->image().cols - 2;
image_height_minus_2_ = camera_ptr_->image().rows - 2;
}
void RegionModality::PrecalculatePoseVariables() {
body2camera_pose_ =
camera_ptr_->world2camera_pose() * body_ptr_->body2world_pose();
body2camera_rotation_ = body2camera_pose_.rotation().matrix();
body2camera_rotation_xy_ = body2camera_rotation_.topRows<2>();
}
void RegionModality::PrecalculateScaleDependentVariables(int corr_iteration) {
if (corr_iteration < int(scales_.size()))
scale_ = scales_[corr_iteration];
else
scale_ = 1;
fscale_ = float(scale_);
line_length_ = line_length_in_segments_ * scale_;
line_length_minus_1_ = line_length_ - 1;
line_length_minus_1_half_ = float(line_length_ - 1) * 0.5f;
line_length_half_minus_1_ = float(line_length_) * 0.5f - 1.0f;
}
void RegionModality::AddLinePixelColorsToTempHistograms() {
const cv::Mat &image{camera_ptr_->image()};
const Model::TemplateView *template_view;
model_ptr_->GetClosestTemplateView(body2camera_pose_, &template_view);
// Iterate over all points
std::fill(begin(temp_histogram_f_), end(temp_histogram_f_), 0.0f);
std::fill(begin(temp_histogram_b_), end(temp_histogram_b_), 0.0f);
for (auto data_point = begin(template_view->data_points);
data_point != begin(template_view->data_points) + n_lines_;
++data_point) {
// Project point data in camera frame
Eigen::Vector3f center_f_camera{body2camera_pose_ *
data_point->center_f_body};
Eigen::Vector2f center{
center_f_camera(0) * fu_ / center_f_camera(2) + ppu_,
center_f_camera(1) * fv_ / center_f_camera(2) + ppv_};
Eigen::Vector2f normal{
(body2camera_rotation_xy_ * data_point->normal_f_body).normalized()};
float foreground_distance =
data_point->foreground_distance * fu_ / center_f_camera(2);
float background_distance =
data_point->background_distance * fu_ / center_f_camera(2);
// Iterate over foreground pixels
float u = center(0) - normal(0) * unconsidered_line_length_ + 0.5f;
float v = center(1) - normal(1) * unconsidered_line_length_ + 0.5f;
int n_iteration =
int(std::fmin(foreground_distance - 2.0f * unconsidered_line_length_,
considered_line_length_) +
0.5f);
for (int i = 0; i < n_iteration; ++i) {
if (int(u) < 0 || int(u) > image_width_minus_1_ || int(v) < 0 ||
int(v) > image_height_minus_1_)
break;
AddPixelColorToHistogram(image.at<cv::Vec3b>(int(v), int(u)),
&temp_histogram_f_);
u -= normal(0);
v -= normal(1);
}
// Iterate over background pixels
u = center(0) + normal(0) * unconsidered_line_length_ + 0.5f;
v = center(1) + normal(1) * unconsidered_line_length_ + 0.5f;
n_iteration =
int(std::fmin(background_distance - 2.0f * unconsidered_line_length_,
considered_line_length_) +
0.5f);
for (int i = 0; i < n_iteration; ++i) {
if (int(u) < 0 || int(u) > image_width_minus_1_ || int(v) < 0 ||
int(v) > image_height_minus_1_)
break;
AddPixelColorToHistogram(image.at<cv::Vec3b>(int(v), int(u)),
&temp_histogram_b_);
u += normal(0);
v += normal(1);
}
}
}
void RegionModality::AddPixelColorToHistogram(
const cv::Vec3b &pixel_color,
std::vector<float> *enlarged_histogram) const {
(*enlarged_histogram)[(pixel_color[0] >> histogram_bitshift_) *
n_histogram_bins_squared_ +
(pixel_color[1] >> histogram_bitshift_) *
n_histogram_bins_ +
(pixel_color[2] >> histogram_bitshift_)] += 1.0f;
}
bool RegionModality::CalculateHistogram(
float learning_rate, const std::vector<float> &temp_histogram,
std::vector<float> *histogram) {
// Calculate sum for normalization
float sum = 0.0f;
#ifndef _DEBUG
#pragma omp simd
#endif
for (int i = 0; i < n_histogram_bins_cubed_; i++) {
sum += temp_histogram[i];
}
if (!sum) return false;
// Calculate histogram
float complement_learning_rate = 1.0f - learning_rate;
float learning_rate_divide_sum = learning_rate / sum;
#ifndef _DEBUG
#pragma omp simd
#endif
for (int i = 0; i < n_histogram_bins_cubed_; i++) {
(*histogram)[i] *= complement_learning_rate;
(*histogram)[i] += temp_histogram[i] * learning_rate_divide_sum;
}
return true;
}
void RegionModality::CalculateBasicLineData(const Model::PointData &data_point,
DataLine *data_line) const {
Eigen::Vector3f center_f_camera{body2camera_pose_ * data_point.center_f_body};
Eigen::Vector2f normal_f_camera{
(body2camera_rotation_xy_ * data_point.normal_f_body).normalized()};
data_line->center_f_body = data_point.center_f_body;
data_line->center_f_camera = center_f_camera;
data_line->center_u = center_f_camera(0) * fu_ / center_f_camera(2) + ppu_;
data_line->center_v = center_f_camera(1) * fv_ / center_f_camera(2) + ppv_;
data_line->normal_u = normal_f_camera(0);
data_line->normal_v = normal_f_camera(1);
data_line->continuous_distance =
std::min(data_point.background_distance, data_point.foreground_distance) *
fu_ / (center_f_camera(2) * fscale_);
}
bool RegionModality::IsLineValid(float u, float v,
float continuous_distance) const {
// Check if continuous distance is long enough
if (continuous_distance < min_continuous_distance_) return false;
// Check if image coordinate is on image
int i_u = int(u + 0.5f);
int i_v = int(v + 0.5f);
if (i_u < 0 || i_u > image_width_minus_1_ || i_v < 0 ||
i_v > image_height_minus_1_)
return false;
// Check if line center is on mask
if (use_occlusion_handling_) {
return occlusion_renderer_ptr_->GetValue(i_v, i_u) & encoded_occlusion_id_;
}
return true;
}
bool RegionModality::CalculateSegmentProbabilities(
float center_u, float center_v, float normal_u, float normal_v,
std::vector<float> *segment_probabilities_f,
std::vector<float> *segment_probabilities_b,
float *normal_component_to_scale, float *delta_r) const {
const cv::Mat &image{camera_ptr_->image()};
// Select case if line is more horizontal or vertical
if (std::fabs(normal_v) < std::fabs(normal_u)) {
// Calculate step and starting position
float v_step = normal_v / normal_u;
// Notice: u = int(center_u - (line_length / 2 - 0.5) + 0.5)
int u = int(center_u - line_length_half_minus_1_);
int u_end = u + line_length_minus_1_;
float v_f = center_v + v_step * (float(u) - center_u) + 0.5f;
float v_f_end = v_f + v_step * float(line_length_minus_1_);
// Check if line is on image (margin of 1 for rounding errors of v_f_end)
if (u < 0 || u_end > image_width_minus_1_ || int(v_f) < 0 ||
int(v_f) > image_height_minus_1_ || int(v_f_end) < 1 ||
int(v_f_end) > image_height_minus_2_) {
return false;
}
// Iterate over all pixels of line and calculate probabilities
if (normal_u > 0) {
float *segment_probability_f = segment_probabilities_f->data();
float *segment_probability_b = segment_probabilities_b->data();
*segment_probability_f = 1.0f;
*segment_probability_b = 1.0f;
int segment_idx = 0;
for (; u <= u_end; ++u, v_f += v_step, segment_idx++) {
if (segment_idx == scale_) {
*(++segment_probability_f) = 1.0f;
*(++segment_probability_b) = 1.0f;
segment_idx = 0;
}
MultiplyPixelColorProbability(image.at<cv::Vec3b>(int(v_f), u),
segment_probability_f,
segment_probability_b);
}
} else {
float *segment_probability_f = &segment_probabilities_f->back();
float *segment_probability_b = &segment_probabilities_b->back();
*segment_probability_f = 1.0f;
*segment_probability_b = 1.0f;
int segment_idx = 0;
for (; u <= u_end; ++u, v_f += v_step, ++segment_idx) {
if (segment_idx == scale_) {
*(--segment_probability_f) = 1.0f;
*(--segment_probability_b) = 1.0f;
segment_idx = 0;
}
MultiplyPixelColorProbability(image.at<cv::Vec3b>(int(v_f), u),
segment_probability_f,
segment_probability_b);
}
}
// define dominant normal component and calculate delta_r
*normal_component_to_scale = std::fabs(normal_u) / fscale_;
*delta_r = (std::round(center_u - line_length_minus_1_half_) +
line_length_minus_1_half_ - center_u) /
normal_u;
} else {
// Calculate step and starting position
float u_step = normal_u / normal_v;
// Notice: v = int(center_v - (line_length / 2 - 0.5) + 0.5)
int v = int(center_v - line_length_half_minus_1_);
int v_end = v + line_length_minus_1_;
float u_f = center_u + u_step * (float(v) - center_v) + 0.5f;
float u_f_end = u_f + u_step * float(line_length_minus_1_);
// Check if line is on image (margin of 1 for rounding errors of u_f_end)
if (v < 0 || v_end > image_height_minus_1_ || int(u_f) < 0 ||
int(u_f) > image_width_minus_1_ || int(u_f_end) < 1 ||
int(u_f_end) > image_width_minus_2_) {
return false;
}
// Iterate over all pixels of line and calculate probabilities
if (normal_v > 0) {
float *segment_probability_f = segment_probabilities_f->data();
float *segment_probability_b = segment_probabilities_b->data();
*segment_probability_f = 1.0f;
*segment_probability_b = 1.0f;
int segment_idx = 0;
for (; v <= v_end; ++v, u_f += u_step, ++segment_idx) {
if (segment_idx == scale_) {
*(++segment_probability_f) = 1.0f;
*(++segment_probability_b) = 1.0f;
segment_idx = 0;
}
MultiplyPixelColorProbability(image.at<cv::Vec3b>(v, int(u_f)),
segment_probability_f,
segment_probability_b);
}
} else {
float *segment_probability_f = &segment_probabilities_f->back();
float *segment_probability_b = &segment_probabilities_b->back();
*segment_probability_f = 1.0f;
*segment_probability_b = 1.0f;
int segment_idx = 0;
for (; v <= v_end; ++v, u_f += u_step, ++segment_idx) {
if (segment_idx == scale_) {
*(--segment_probability_f) = 1.0f;
*(--segment_probability_b) = 1.0f;
segment_idx = 0;
}
MultiplyPixelColorProbability(image.at<cv::Vec3b>(v, int(u_f)),
segment_probability_f,
segment_probability_b);
}
}
// define normal component and calculate delta_r
*normal_component_to_scale = std::fabs(normal_v) / fscale_;
*delta_r = (std::round(center_v - line_length_minus_1_half_) +
line_length_minus_1_half_ - center_v) /
normal_v;
}
// Normalize segment probabilities
if (scale_ > 1) {
auto segment_probability_f = begin(*segment_probabilities_f);
auto segment_probability_b = begin(*segment_probabilities_b);
for (; segment_probability_f != end(*segment_probabilities_f);
++segment_probability_f, ++segment_probability_b) {
if (*segment_probability_f || *segment_probability_b) {
float sum = *segment_probability_f;
sum += *segment_probability_b;
*segment_probability_f /= sum;
*segment_probability_b /= sum;
} else {
*segment_probability_f = 0.5f;
*segment_probability_b = 0.5f;
}
}
}
return true;
}
void RegionModality::MultiplyPixelColorProbability(const cv::Vec3b &pixel_color,
float *probability_f,
float *probability_b) const {
// Retrive pixel color probability values
int idx = (pixel_color[0] >> histogram_bitshift_) * n_histogram_bins_squared_;
idx += (pixel_color[1] >> histogram_bitshift_) * n_histogram_bins_;
idx += pixel_color[2] >> histogram_bitshift_;
float pixel_color_probability_f = histogram_f_[idx];
float pixel_color_probability_b = histogram_b_[idx];
// Normalize pixel color probabilitiy values
if (pixel_color_probability_f || pixel_color_probability_b) {
float sum = pixel_color_probability_f;
sum += pixel_color_probability_b;
pixel_color_probability_f /= sum;
pixel_color_probability_b /= sum;
} else {
pixel_color_probability_f = 0.5f;
pixel_color_probability_b = 0.5f;
}
// Multiply pixel color probability values
*probability_f *= pixel_color_probability_f;
*probability_b *= pixel_color_probability_b;
}
void RegionModality::CalculateDistribution(
const std::vector<float> &segment_probabilities_f,
const std::vector<float> &segment_probabilities_b,
std::vector<float> *distribution) const {
std::vector<float>::const_iterator segment_probabilities_f_it;
std::vector<float>::const_iterator segment_probabilities_b_it;
std::vector<float>::const_iterator function_lookup_f_it;
std::vector<float>::const_iterator function_lookup_b_it;
distribution->resize(distribution_length_);
float distribution_area = 0.0f;
// Loop over entire distribution and start values of segment probabilities
auto segment_probabilities_f_it_start = begin(segment_probabilities_f);
auto segment_probabilities_b_it_start = begin(segment_probabilities_b);
for (auto distribution_it = begin(*distribution);
distribution_it != end(*distribution);
++distribution_it, ++segment_probabilities_f_it_start,
++segment_probabilities_b_it_start) {
*distribution_it = 1.0f;
// Loop over values of segment probabilities and corresponding lookup values
segment_probabilities_f_it = segment_probabilities_f_it_start;
segment_probabilities_b_it = segment_probabilities_b_it_start;
function_lookup_f_it = begin(function_lookup_f_);
function_lookup_b_it = begin(function_lookup_b_);
for (; function_lookup_f_it != end(function_lookup_f_);
++function_lookup_f_it, ++function_lookup_b_it,
++segment_probabilities_f_it, ++segment_probabilities_b_it) {
*distribution_it *= *segment_probabilities_f_it * *function_lookup_f_it +
*segment_probabilities_b_it * *function_lookup_b_it;
}
distribution_area += *distribution_it;
}
// Normalize distribution
for (auto &probability_distribution : *distribution) {
probability_distribution /= distribution_area;
}
}
void RegionModality::CalculateDistributionMoments(
const std::vector<float> &distribution, float *mean,
float *standard_deviation, float *variance) const {
// Calculate mean from the beginning of the distribution
float mean_from_begin = 0.0f;
for (int i = 0; i < distribution_length_; ++i) {
mean_from_begin += float(i) * distribution[i];
}
// Calculate variance
float distribution_variance = 0.0f;
for (int i = 0; i < distribution_length_; ++i) {
distribution_variance +=
powf(float(i) - mean_from_begin, 2.0f) * distribution[i];
}
// Calculate moments
*mean = mean_from_begin - distribution_length_minus_1_half_;
*variance = std::max(distribution_variance, min_variance_);
*standard_deviation = std::sqrt(*variance);
}
void RegionModality::ShowAndSaveImage(const std::string &title, int save_index,
const cv::Mat &image) const {
if (display_visualization_) cv::imshow(title, image);
if (save_visualizations_) {
std::filesystem::path path{
save_directory_ / (title + "_" + std::to_string(save_index) + ".png")};
cv::imwrite(path.string(), image);
}
}
void RegionModality::VisualizePointsCameraImage(const std::string &title,
int save_index) const {
cv::Mat visualization_image;
camera_ptr_->image().copyTo(visualization_image);
DrawPoints(cv::Vec3b{24, 184, 234}, &visualization_image);
ShowAndSaveImage(name_ + "_" + title, save_index, visualization_image);
}
void RegionModality::VisualizePointsHistogramImage(const std::string &title,
int save_index) const {
cv::Mat visualization_image(camera_ptr_->image().size(), CV_8UC3);
DrawProbabilityImage(cv::Vec3b{255, 255, 255}, &visualization_image);
DrawPoints(cv::Vec3b{24, 184, 234}, &visualization_image);
ShowAndSaveImage(name_ + "_" + title, save_index, visualization_image);
}
void RegionModality::VisualizePointsOcclusionMask(const std::string &title,
int save_index) const {
cv::Mat visualization_image;
occlusion_renderer_ptr_->FetchOcclusionMask();
cv::cvtColor(occlusion_renderer_ptr_->occlusion_mask(), visualization_image,
cv::COLOR_GRAY2BGR);
cv::resize(visualization_image, visualization_image,
cv::Size{camera_ptr_->intrinsics().width,
camera_ptr_->intrinsics().height},
occlusion_renderer_ptr_->mask_resolution(),
occlusion_renderer_ptr_->mask_resolution(),
cv::InterpolationFlags::INTER_NEAREST);
cv::addWeighted(visualization_image, 0.4, camera_ptr_->image(), 0.6, 10,
visualization_image);
DrawPoints(cv::Vec3b{24, 184, 234}, &visualization_image);
ShowAndSaveImage(name_ + "_" + title, save_index, visualization_image);
}
void RegionModality::VisualizeLines(const std::string &title,
int save_index) const {
cv::Mat visualization_image(camera_ptr_->image().size(), CV_8UC3);
DrawProbabilityImage(cv::Vec3b{255, 255, 255}, &visualization_image);
DrawLines(cv::Vec3b{24, 184, 234}, cv::Vec3b{61, 63, 179},
&visualization_image);
ShowAndSaveImage(name_ + "_" + title, save_index, visualization_image);
}
void RegionModality::DrawPoints(const cv::Vec3b &color_point,
cv::Mat *image) const {
for (const auto &data_line : data_lines_) {
DrawPointInImage(data_line.center_f_camera, color_point,
camera_ptr_->intrinsics(), image);
}
}
void RegionModality::DrawLines(const cv::Vec3b &color_line,
const cv::Vec3b &color_high_probability,
cv::Mat *image) const {
float scale_minus_1_half_ = (fscale_ - 1.0f) / 2.0f;
int u, v;
for (const auto &data_line : data_lines_) {
for (int i = 0; i < distribution_length_; ++i) {
for (int j = 0; j < scale_; ++j) {
if (std::fabs(data_line.normal_u) > std::fabs(data_line.normal_v)) {
u = int(
data_line.center_u +
float(sgn(data_line.normal_u)) *
(fscale_ * (float(i) - distribution_length_minus_1_half_) +
float(j) - scale_minus_1_half_) +
0.5f);
v = int(data_line.center_v +
(float(u) - data_line.center_u) *
(data_line.normal_v / data_line.normal_u) +
0.5f);
} else {
v = int(
data_line.center_v +
float(sgn(data_line.normal_v)) *
(fscale_ * (float(i) - distribution_length_minus_1_half_) +
float(j) - scale_minus_1_half_) +
0.5f);
u = int(data_line.center_u +
(float(v) - data_line.center_v) *
(data_line.normal_u / data_line.normal_v) +
0.5f);
}
float color_ratio = std::min(3 * data_line.distribution[i], 1.0f);
image->at<cv::Vec3b>(v, u) = color_ratio * color_high_probability +
(1.0f - color_ratio) * color_line;
}
}
}
}
void RegionModality::DrawProbabilityImage(const cv::Vec3b &color_b,
cv::Mat *probability_image) const {
const cv::Mat &color_image{camera_ptr_->image()};
float pixel_probability_f, pixel_probability_b;
const cv::Vec3b *color_image_value;
cv::Vec3b *probability_image_value;
for (int v = 0; v < color_image.rows; ++v) {
color_image_value = color_image.ptr<cv::Vec3b>(v);
probability_image_value = probability_image->ptr<cv::Vec3b>(v);
for (int u = 0; u < color_image.cols; ++u) {
pixel_probability_f = 1.0f;
pixel_probability_b = 1.0f;
MultiplyPixelColorProbability(color_image_value[u], &pixel_probability_f,
&pixel_probability_b);
probability_image_value[u] = color_b * pixel_probability_b;
}
}
}
void RegionModality::UpdateLineCentersWithCurrentPose() {
Transform3fA body2camera_pose{camera_ptr_->world2camera_pose() *
body_ptr_->body2world_pose()};
for (auto &data_line : data_lines_) {
data_line.center_f_camera = body2camera_pose * data_line.center_f_body;
}
}