Ultimate SD Upscale does not work anymore after updating ControlNet #98
Unanswered
paolobesser
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi. Yesterday (jun 08th, 2023) I decided to check for A1111 extensions updates and something went terribly wrong. It broke both Dreambooth (but I can live without it) and affected ControlNet's ability to upscale images using the script above (which is more important to me). Every time I try to upscale any image, no matter the image size, no matter the upscaler I choose, no matter the tile size, at the third tile the script fails with this error:
RuntimeError: Given groups=1, weight of size [64, 3, 3, 3], expected input[1, 4, 192, 192] to have 3 channels, but got 4 channels instead
I have removed Dreambooth at all, I have removed ControlNet as well, I downloaded ControlNet from scratch and then added all models again. I have also git updated the whole A1111 and started it with no parameters (even no xformers), including downloading Ultimate SD Upscale again. Nothing fixed the issue. I am running SD on Windows 11, 64 bit and it used to work like a charm.
2023-06-09 10:04:57,111 - ControlNet - INFO - Pixel Perfect Computation:
2023-06-09 10:04:57,112 - ControlNet - INFO - resize_mode = ResizeMode.INNER_FIT
2023-06-09 10:04:57,112 - ControlNet - INFO - raw_H = 512
2023-06-09 10:04:57,112 - ControlNet - INFO - raw_W = 512
2023-06-09 10:04:57,112 - ControlNet - INFO - target_H = 512
2023-06-09 10:04:57,112 - ControlNet - INFO - target_W = 512
2023-06-09 10:04:57,112 - ControlNet - INFO - estimation = 512.0
2023-06-09 10:04:57,112 - ControlNet - INFO - Preview Resolution = 512
2023-06-09 10:05:16,759 - ControlNet - INFO - Pixel Perfect Computation:
2023-06-09 10:05:16,760 - ControlNet - INFO - resize_mode = ResizeMode.INNER_FIT
2023-06-09 10:05:16,760 - ControlNet - INFO - raw_H = 512
2023-06-09 10:05:16,760 - ControlNet - INFO - raw_W = 512
2023-06-09 10:05:16,760 - ControlNet - INFO - target_H = 512
2023-06-09 10:05:16,760 - ControlNet - INFO - target_W = 512
2023-06-09 10:05:16,760 - ControlNet - INFO - estimation = 512.0
2023-06-09 10:05:16,761 - ControlNet - INFO - Preview Resolution = 512
Canva size: 2048x2048
Image size: 512x512
Scale factor: 4
Upscaling iteration 1 with scale factor 4
Tile 1/9
Tile 2/9
Tile 3/9
Tile 4/9
Tile 5/9
Tile 6/9
Tile 7/9
Tile 8/9
Tile 9/9
Tile size: 512x512
Tiles amount: 16
Grid: 4x4
Redraw enabled: True
Seams fix mode: NONE
2023-06-09 10:05:22,802 - ControlNet - INFO - Loading model: control_v11f1e_sd15_tile [a371b31b]
2023-06-09 10:05:23,666 - ControlNet - INFO - Loaded state_dict from [D:\automatic1111\webui\extensions\sd-webui-controlnet\models\control_v11f1e_sd15_tile.pth]
2023-06-09 10:05:23,667 - ControlNet - INFO - Loading config: D:\automatic1111\webui\extensions\sd-webui-controlnet\models\control_v11f1e_sd15_tile.yaml
2023-06-09 10:05:25,805 - ControlNet - INFO - ControlNet model control_v11f1e_sd15_tile [a371b31b] loaded.
2023-06-09 10:05:38,376 - ControlNet - INFO - Loading preprocessor: tile_resample
2023-06-09 10:05:38,376 - ControlNet - INFO - Pixel Perfect Computation:
2023-06-09 10:05:38,377 - ControlNet - INFO - resize_mode = ResizeMode.INNER_FIT
2023-06-09 10:05:38,377 - ControlNet - INFO - raw_H = 576
2023-06-09 10:05:38,377 - ControlNet - INFO - raw_W = 576
2023-06-09 10:05:38,377 - ControlNet - INFO - target_H = 576
2023-06-09 10:05:38,377 - ControlNet - INFO - target_W = 576
2023-06-09 10:05:38,377 - ControlNet - INFO - estimation = 576.0
2023-06-09 10:05:38,377 - ControlNet - INFO - preprocessor resolution = 576
100%|████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:03<00:00, 2.01it/s]
2023-06-09 10:05:45,367 - ControlNet - INFO - Loading model from cache: control_v11f1e_sd15_tile [a371b31b], 29.50s/it]
2023-06-09 10:05:45,514 - ControlNet - INFO - Loading preprocessor: tile_resample
2023-06-09 10:05:45,514 - ControlNet - INFO - Pixel Perfect Computation:
2023-06-09 10:05:45,514 - ControlNet - INFO - resize_mode = ResizeMode.INNER_FIT
2023-06-09 10:05:45,514 - ControlNet - INFO - raw_H = 576
2023-06-09 10:05:45,515 - ControlNet - INFO - raw_W = 576
2023-06-09 10:05:45,515 - ControlNet - INFO - target_H = 576
2023-06-09 10:05:45,515 - ControlNet - INFO - target_W = 576
2023-06-09 10:05:45,515 - ControlNet - INFO - estimation = 576.0
2023-06-09 10:05:45,515 - ControlNet - INFO - preprocessor resolution = 576
100%|████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:03<00:00, 1.94it/s]
Error completing request█████████████████████████████████████▋ | 70/112 [22:57<02:03, 2.95s/it]
Arguments: ('task(7laf7bi8yemfz1u)', 0, '', '', [], <PIL.Image.Image image mode=RGBA size=512x512 at 0x21FAD355D50>, None, None, None, None, None, None, 20, 0, 4, 0, 1, False, False, 1, 1, 7, 1.5, 0.33, -1.0, -1.0, 0, 0, 0, False, 0, 512, 512, 1, 0, 0, 32, 0, '', '', '', [], 10, False, 'MultiDiffusion', False, True, 1024, 1024, 96, 96, 48, 4, 'None', 2, False, 10, 1, 1, 64, False, False, False, False, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 1536, 96, True, True, True, False, False, '', 0, <scripts.controlnet_ui.controlnet_ui_group.UiControlNetUnit object at 0x0000021FED8408B0>, '
\n \n
\n', True, True, '', '', True, 50, True, 1, 0, False, 4, 0.5, 'Linear', 'None', 'CFG Scale
should be 2 or lower.Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8
', 128, 8, ['left', 'right', 'up', 'down'], 1, 0.05, 128, 4, 0, ['left', 'right', 'up', 'down'], False, False, 'positive', 'comma', 0, False, False, '', 'Will upscale the image by the selected scale factor; use width and height sliders to set tile size
', 64, 0, 2, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, None, None, False, 50, 'Will upscale the image depending on the selected target size type
', 512, 0, 8, 32, 64, 0.35, 32, 6, True, 0, False, 8, 0, 2, 2048, 2048, 4) {}Traceback (most recent call last):
File "D:\automatic1111\webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "D:\automatic1111\webui\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\automatic1111\webui\modules\img2img.py", line 176, in img2img
processed = modules.scripts.scripts_img2img.run(p, *args)
File "D:\automatic1111\webui\modules\scripts.py", line 441, in run
processed = script.run(p, *script_args)
File "D:\automatic1111\webui\extensions\ultimate-upscale-for-automatic1111\scripts\ultimate-upscale.py", line 553, in run
upscaler.process()
File "D:\automatic1111\webui\extensions\ultimate-upscale-for-automatic1111\scripts\ultimate-upscale.py", line 136, in process
self.image = self.redraw.start(self.p, self.image, self.rows, self.cols)
File "D:\automatic1111\webui\extensions\ultimate-upscale-for-automatic1111\scripts\ultimate-upscale.py", line 243, in start
return self.linear_process(p, image, rows, cols)
File "D:\automatic1111\webui\extensions\ultimate-upscale-for-automatic1111\scripts\ultimate-upscale.py", line 178, in linear_process
processed = processing.process_images(p)
File "D:\automatic1111\webui\modules\processing.py", line 610, in process_images
res = process_images_inner(p)
File "D:\automatic1111\webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 42, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "D:\automatic1111\webui\modules\processing.py", line 775, in process_images_inner
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
File "D:\automatic1111\webui\modules\processing.py", line 70, in apply_overlay
image = images.resize_image(1, image, w, h)
File "D:\automatic1111\webui\modules\images.py", line 288, in resize_image
resized = resize(im, src_w, src_h)
File "D:\automatic1111\webui\modules\images.py", line 271, in resize
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
File "D:\automatic1111\webui\modules\upscaler.py", line 62, in upscale
img = self.do_upscale(img, selected_model)
File "D:\automatic1111\webui\modules\esrgan_model.py", line 150, in do_upscale
img = esrgan_upscale(model, img)
File "D:\automatic1111\webui\modules\esrgan_model.py", line 224, in esrgan_upscale
output = upscale_without_tiling(model, tile)
File "D:\automatic1111\webui\modules\esrgan_model.py", line 203, in upscale_without_tiling
output = model(img)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\automatic1111\webui\modules\esrgan_model_arch.py", line 61, in forward
return self.model(feat)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\container.py", line 217, in forward
input = module(input)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\automatic1111\webui\extensions-builtin\Lora\lora.py", line 415, in lora_Conv2d_forward
return torch.nn.Conv2d_forward_before_lora(self, input)
File "D:\automatic1111\webui\extensions\a1111-sd-webui-lycoris\lycoris.py", line 753, in lyco_Conv2d_forward
return torch.nn.Conv2d_forward_before_lyco(self, input)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\conv.py", line 463, in forward
return self._conv_forward(input, self.weight, self.bias)
File "D:\automatic1111\system\python\lib\site-packages\torch\nn\modules\conv.py", line 459, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [64, 3, 3, 3], expected input[1, 4, 192, 192] to have 3 channels, but got 4 channels instead
Beta Was this translation helpful? Give feedback.
All reactions