You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#automate-time-series-feature-engineering-with-tsfresh">6.7.19. Automate Time Series Feature Engineering with tsfresh</a></li>
535
+
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#tsmoothie-fast-and-flexible-tool-for-exponential-smoothing">6.7.20. tsmoothie: Fast and Flexible Tool for Exponential Smoothing</a></li>
535
536
</ul>
536
537
</nav>
537
538
</div>
@@ -2468,6 +2469,87 @@ <h2><span class="section-number">6.7.19. </span>Automate Time Series Feature Eng
2468
2469
</div>
2469
2470
<p><aclass="reference external" href="https://bit.ly/3VXi3Ks">Link to tsfresh</a>.</p>
<h2><spanclass="section-number">6.7.20. </span>tsmoothie: Fast and Flexible Tool for Exponential Smoothing<aclass="headerlink" href="#tsmoothie-fast-and-flexible-tool-for-exponential-smoothing" title="Permalink to this heading">#</a></h2>
<p>Exponential smoothing is useful for capturing the underlying pattern in the data, especially for data with a strong trend or seasonal component.</p>
2488
+
<p>tsmoothie is designed to be fast and efficient and provides a wide range of smoothing techniques.</p>
2489
+
<p>To see how tsmoothie works, let’s generate a single random walk time series of length 200 using the <codeclass="docutils literal notranslate"><spanclass="pre">sim_randomwalk()</span></code> function.</p>
<p>Next, create a <codeclass="docutils literal notranslate"><spanclass="pre">LowessSmoother</span></code> object with a <codeclass="docutils literal notranslate"><spanclass="pre">smooth_fraction</span></code> of <codeclass="docutils literal notranslate"><spanclass="pre">0.1</span></code> (i.e., 10% of the data points are used for local regression) and 1 iteration. We then apply the smoothing operation to the data using the <codeclass="docutils literal notranslate"><spanclass="pre">smooth()</span></code> method.</p>
<p>After smoothing the data, we use the <codeclass="docutils literal notranslate"><spanclass="pre">get_intervals()</span></code> method of the <codeclass="docutils literal notranslate"><spanclass="pre">LowessSmoother</span></code> object to calculate the lower and upper bounds of the prediction interval for the smoothed time series.</p>
<p>Finally, we plot the smoothed time series (as a blue line), and the prediction interval (as a shaded region) using matplotlib.</p>
2529
+
<divclass="cell docutils container">
2530
+
<divclass="cell_input docutils container">
2531
+
<divclass="highlight-ipython3 notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># plot the smoothed time series with intervals</span>
<p>This graph effectively highlights the trend and seasonal components present in the time series data through the use of a smoothed representation.</p>
2551
+
<p><aclass="reference external" href="https://bit.ly/3L8KXky">Link to tsmoothie</a>.</p>
2552
+
</section>
2471
2553
</section>
2472
2554
2473
2555
<scripttype="text/x-thebe-config">
@@ -2552,6 +2634,7 @@ <h2><span class="section-number">6.7.19. </span>Automate Time Series Feature Eng
2552
2634
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#beyond-point-estimates-leverage-prediction-intervals-for-robust-forecasting">6.7.17. Beyond Point Estimates: Leverage Prediction Intervals for Robust Forecasting</a></li>
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#automate-time-series-feature-engineering-with-tsfresh">6.7.19. Automate Time Series Feature Engineering with tsfresh</a></li>
2637
+
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#tsmoothie-fast-and-flexible-tool-for-exponential-smoothing">6.7.20. tsmoothie: Fast and Flexible Tool for Exponential Smoothing</a></li>
0 commit comments