|
113 | 113 | },
|
114 | 114 | {
|
115 | 115 | "data": {
|
116 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 30;\n var nbb_unformatted_code = \"import numpy as np\\nfrom distfit import distfit\\n\\nX = np.random.normal(0, 3, 1000)\\n\\n# Initialize model\\ndist = distfit()\\n\\n# Find best theoretical distribution for empirical data X\\ndistribution = dist.fit_transform(X)\\ndist.plot()\";\n var nbb_formatted_code = \"import numpy as np\\nfrom distfit import distfit\\n\\nX = np.random.normal(0, 3, 1000)\\n\\n# Initialize model\\ndist = distfit()\\n\\n# Find best theoretical distribution for empirical data X\\ndistribution = dist.fit_transform(X)\\ndist.plot()\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 116 | + "application/javascript": [ |
| 117 | + "\n", |
| 118 | + " setTimeout(function() {\n", |
| 119 | + " var nbb_cell_id = 30;\n", |
| 120 | + " var nbb_unformatted_code = \"import numpy as np\\nfrom distfit import distfit\\n\\nX = np.random.normal(0, 3, 1000)\\n\\n# Initialize model\\ndist = distfit()\\n\\n# Find best theoretical distribution for empirical data X\\ndistribution = dist.fit_transform(X)\\ndist.plot()\";\n", |
| 121 | + " var nbb_formatted_code = \"import numpy as np\\nfrom distfit import distfit\\n\\nX = np.random.normal(0, 3, 1000)\\n\\n# Initialize model\\ndist = distfit()\\n\\n# Find best theoretical distribution for empirical data X\\ndistribution = dist.fit_transform(X)\\ndist.plot()\";\n", |
| 122 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 123 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 124 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 125 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 126 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 127 | + " }\n", |
| 128 | + " break;\n", |
| 129 | + " }\n", |
| 130 | + " }\n", |
| 131 | + " }, 500);\n", |
| 132 | + " " |
| 133 | + ], |
117 | 134 | "text/plain": [
|
118 | 135 | "<IPython.core.display.Javascript object>"
|
119 | 136 | ]
|
|
359 | 376 | },
|
360 | 377 | {
|
361 | 378 | "data": {
|
362 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 6;\n var nbb_unformatted_code = \"import pandas as pd\\nfrom fastai.tabular.core import cont_cat_split\\n\\ndf = pd.DataFrame(\\n {\\n \\\"col1\\\": [1, 2, 3, 4, 5],\\n \\\"col2\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\", \\\"d\\\", \\\"e\\\"],\\n \\\"col3\\\": [1.0, 2.0, 3.0, 4.0, 5.0],\\n }\\n)\\n\\ncont_names, cat_names = cont_cat_split(df)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n var nbb_formatted_code = \"import pandas as pd\\nfrom fastai.tabular.core import cont_cat_split\\n\\ndf = pd.DataFrame(\\n {\\n \\\"col1\\\": [1, 2, 3, 4, 5],\\n \\\"col2\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\", \\\"d\\\", \\\"e\\\"],\\n \\\"col3\\\": [1.0, 2.0, 3.0, 4.0, 5.0],\\n }\\n)\\n\\ncont_names, cat_names = cont_cat_split(df)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 379 | + "application/javascript": [ |
| 380 | + "\n", |
| 381 | + " setTimeout(function() {\n", |
| 382 | + " var nbb_cell_id = 6;\n", |
| 383 | + " var nbb_unformatted_code = \"import pandas as pd\\nfrom fastai.tabular.core import cont_cat_split\\n\\ndf = pd.DataFrame(\\n {\\n \\\"col1\\\": [1, 2, 3, 4, 5],\\n \\\"col2\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\", \\\"d\\\", \\\"e\\\"],\\n \\\"col3\\\": [1.0, 2.0, 3.0, 4.0, 5.0],\\n }\\n)\\n\\ncont_names, cat_names = cont_cat_split(df)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n", |
| 384 | + " var nbb_formatted_code = \"import pandas as pd\\nfrom fastai.tabular.core import cont_cat_split\\n\\ndf = pd.DataFrame(\\n {\\n \\\"col1\\\": [1, 2, 3, 4, 5],\\n \\\"col2\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\", \\\"d\\\", \\\"e\\\"],\\n \\\"col3\\\": [1.0, 2.0, 3.0, 4.0, 5.0],\\n }\\n)\\n\\ncont_names, cat_names = cont_cat_split(df)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n", |
| 385 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 386 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 387 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 388 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 389 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 390 | + " }\n", |
| 391 | + " break;\n", |
| 392 | + " }\n", |
| 393 | + " }\n", |
| 394 | + " }, 500);\n", |
| 395 | + " " |
| 396 | + ], |
363 | 397 | "text/plain": [
|
364 | 398 | "<IPython.core.display.Javascript object>"
|
365 | 399 | ]
|
|
406 | 440 | },
|
407 | 441 | {
|
408 | 442 | "data": {
|
409 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 7;\n var nbb_unformatted_code = \"cont_names, cat_names = cont_cat_split(df, max_card=3)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n var nbb_formatted_code = \"cont_names, cat_names = cont_cat_split(df, max_card=3)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 443 | + "application/javascript": [ |
| 444 | + "\n", |
| 445 | + " setTimeout(function() {\n", |
| 446 | + " var nbb_cell_id = 7;\n", |
| 447 | + " var nbb_unformatted_code = \"cont_names, cat_names = cont_cat_split(df, max_card=3)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n", |
| 448 | + " var nbb_formatted_code = \"cont_names, cat_names = cont_cat_split(df, max_card=3)\\nprint(\\\"Continuous columns:\\\", cont_names)\\nprint(\\\"Categorical columns:\\\", cat_names)\";\n", |
| 449 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 450 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 451 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 452 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 453 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 454 | + " }\n", |
| 455 | + " break;\n", |
| 456 | + " }\n", |
| 457 | + " }\n", |
| 458 | + " }, 500);\n", |
| 459 | + " " |
| 460 | + ], |
410 | 461 | "text/plain": [
|
411 | 462 | "<IPython.core.display.Javascript object>"
|
412 | 463 | ]
|
|
1327 | 1378 | },
|
1328 | 1379 | {
|
1329 | 1380 | "data": {
|
1330 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 21;\n var nbb_unformatted_code = \"import probablepeople as pp\\n\\npp.parse(\\\"Mr. Owen Harris II\\\")\";\n var nbb_formatted_code = \"import probablepeople as pp\\n\\npp.parse(\\\"Mr. Owen Harris II\\\")\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 1381 | + "application/javascript": [ |
| 1382 | + "\n", |
| 1383 | + " setTimeout(function() {\n", |
| 1384 | + " var nbb_cell_id = 21;\n", |
| 1385 | + " var nbb_unformatted_code = \"import probablepeople as pp\\n\\npp.parse(\\\"Mr. Owen Harris II\\\")\";\n", |
| 1386 | + " var nbb_formatted_code = \"import probablepeople as pp\\n\\npp.parse(\\\"Mr. Owen Harris II\\\")\";\n", |
| 1387 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 1388 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 1389 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 1390 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 1391 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 1392 | + " }\n", |
| 1393 | + " break;\n", |
| 1394 | + " }\n", |
| 1395 | + " }\n", |
| 1396 | + " }, 500);\n", |
| 1397 | + " " |
| 1398 | + ], |
1331 | 1399 | "text/plain": [
|
1332 | 1400 | "<IPython.core.display.Javascript object>"
|
1333 | 1401 | ]
|
|
1368 | 1436 | },
|
1369 | 1437 | {
|
1370 | 1438 | "data": {
|
1371 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 22;\n var nbb_unformatted_code = \"pp.parse(\\\"Kate & John Cumings\\\")\";\n var nbb_formatted_code = \"pp.parse(\\\"Kate & John Cumings\\\")\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 1439 | + "application/javascript": [ |
| 1440 | + "\n", |
| 1441 | + " setTimeout(function() {\n", |
| 1442 | + " var nbb_cell_id = 22;\n", |
| 1443 | + " var nbb_unformatted_code = \"pp.parse(\\\"Kate & John Cumings\\\")\";\n", |
| 1444 | + " var nbb_formatted_code = \"pp.parse(\\\"Kate & John Cumings\\\")\";\n", |
| 1445 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 1446 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 1447 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 1448 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 1449 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 1450 | + " }\n", |
| 1451 | + " break;\n", |
| 1452 | + " }\n", |
| 1453 | + " }\n", |
| 1454 | + " }, 500);\n", |
| 1455 | + " " |
| 1456 | + ], |
1372 | 1457 | "text/plain": [
|
1373 | 1458 | "<IPython.core.display.Javascript object>"
|
1374 | 1459 | ]
|
|
1406 | 1491 | },
|
1407 | 1492 | {
|
1408 | 1493 | "data": {
|
1409 |
| - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 23;\n var nbb_unformatted_code = \"pp.parse('Prefect Technologies, Inc')\";\n var nbb_formatted_code = \"pp.parse(\\\"Prefect Technologies, Inc\\\")\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 1494 | + "application/javascript": [ |
| 1495 | + "\n", |
| 1496 | + " setTimeout(function() {\n", |
| 1497 | + " var nbb_cell_id = 23;\n", |
| 1498 | + " var nbb_unformatted_code = \"pp.parse('Prefect Technologies, Inc')\";\n", |
| 1499 | + " var nbb_formatted_code = \"pp.parse(\\\"Prefect Technologies, Inc\\\")\";\n", |
| 1500 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 1501 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 1502 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 1503 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 1504 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 1505 | + " }\n", |
| 1506 | + " break;\n", |
| 1507 | + " }\n", |
| 1508 | + " }\n", |
| 1509 | + " }, 500);\n", |
| 1510 | + " " |
| 1511 | + ], |
1410 | 1512 | "text/plain": [
|
1411 | 1513 | "<IPython.core.display.Javascript object>"
|
1412 | 1514 | ]
|
|
1493 | 1595 | "hash": "484329849bb907480cd798e750759bc6f1d66c93f9e78e7055aa0a2c2de6b47b"
|
1494 | 1596 | },
|
1495 | 1597 | "kernelspec": {
|
1496 |
| - "display_name": "Data-science", |
| 1598 | + "display_name": "Python 3 (ipykernel)", |
1497 | 1599 | "language": "python",
|
1498 |
| - "name": "data-science" |
| 1600 | + "name": "python3" |
1499 | 1601 | },
|
1500 | 1602 | "language_info": {
|
1501 | 1603 | "codemirror_mode": {
|
|
1507 | 1609 | "name": "python",
|
1508 | 1610 | "nbconvert_exporter": "python",
|
1509 | 1611 | "pygments_lexer": "ipython3",
|
1510 |
| - "version": "3.9.6" |
| 1612 | + "version": "3.11.6" |
1511 | 1613 | },
|
1512 | 1614 | "toc": {
|
1513 | 1615 | "base_numbering": 1,
|
|
0 commit comments