You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"### itertools.islice: Efficient Data Processing for Large Data Streams"
675
+
]
676
+
},
677
+
{
678
+
"cell_type": "markdown",
679
+
"id": "ee33429d",
680
+
"metadata": {},
681
+
"source": [
682
+
"Working with large data streams or files can be challenging due to memory limitations. Index slicing is not feasible for extremely large data sets as it requires the entire list to reside in memory.\n",
683
+
"\n",
684
+
"```python\n",
685
+
"# Load all log entries into memory as a list\n",
686
+
"large_log = [log_entry for log_entry in open(\"large_log_file.log\")]\n",
687
+
"\n",
688
+
"# Iterate over the first 100 entries of the list\n",
689
+
"for entry in large_log[:100]:\n",
690
+
" process_log_entry(entry)\n",
691
+
"```"
692
+
]
693
+
},
694
+
{
695
+
"cell_type": "markdown",
696
+
"id": "105480cf",
697
+
"metadata": {},
698
+
"source": [
699
+
"itertools.islice() allows you to process only a portion of the data stream at a time, without the need to load the entire dataset. This approach enables efficient data processing.\n",
700
+
"\n",
701
+
"\n",
702
+
"```python\n",
703
+
"import itertools\n",
704
+
"\n",
705
+
"# Lazily read file lines with a generator\n",
706
+
"large_log = (log_entry for log_entry in open(\"large_log_file.log\"))\n",
707
+
"\n",
708
+
"# Get the first 100 entries from the generator\n",
709
+
"for entry in itertools.islice(large_log, 100):\n",
Copy file name to clipboardExpand all lines: docs/Chapter2/itertools.html
+25Lines changed: 25 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -519,6 +519,7 @@ <h2> Contents </h2>
519
519
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-groupby-group-elements-in-an-iterable-by-a-key">3.2.5. itertools.groupby: Group Elements in an Iterable by a Key</a></li>
520
520
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-zip-longest-zip-iterables-of-different-lengths">3.2.6. itertools.zip_longest: Zip Iterables of Different Lengths</a></li>
521
521
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-dropwhile-drop-elements-in-an-iterable-until-a-condition-is-false">3.2.7. itertools.dropwhile: Drop Elements in an Iterable Until a Condition Is False</a></li>
522
+
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-islice-efficient-data-processing-for-large-data-streams">3.2.8. itertools.islice: Efficient Data Processing for Large Data Streams</a></li>
522
523
</ul>
523
524
</nav>
524
525
</div>
@@ -894,6 +895,29 @@ <h2><span class="section-number">3.2.7. </span>itertools.dropwhile: Drop Element
<h2><spanclass="section-number">3.2.8. </span>itertools.islice: Efficient Data Processing for Large Data Streams<aclass="headerlink" href="#itertools-islice-efficient-data-processing-for-large-data-streams" title="Permalink to this heading">#</a></h2>
900
+
<p>Working with large data streams or files can be challenging due to memory limitations. Index slicing is not feasible for extremely large data sets as it requires the entire list to reside in memory.</p>
901
+
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># Load all log entries into memory as a list</span>
<p>itertools.islice() allows you to process only a portion of the data stream at a time, without the need to load the entire dataset. This approach enables efficient data processing.</p>
@@ -966,6 +990,7 @@ <h2><span class="section-number">3.2.7. </span>itertools.dropwhile: Drop Element
966
990
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-groupby-group-elements-in-an-iterable-by-a-key">3.2.5. itertools.groupby: Group Elements in an Iterable by a Key</a></li>
967
991
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-zip-longest-zip-iterables-of-different-lengths">3.2.6. itertools.zip_longest: Zip Iterables of Different Lengths</a></li>
968
992
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-dropwhile-drop-elements-in-an-iterable-until-a-condition-is-false">3.2.7. itertools.dropwhile: Drop Elements in an Iterable Until a Condition Is False</a></li>
993
+
<liclass="toc-h2 nav-item toc-entry"><aclass="reference internal nav-link" href="#itertools-islice-efficient-data-processing-for-large-data-streams">3.2.8. itertools.islice: Efficient Data Processing for Large Data Streams</a></li>
"### itertools.islice: Efficient Data Processing for Large Data Streams"
675
+
]
676
+
},
677
+
{
678
+
"cell_type": "markdown",
679
+
"id": "ee33429d",
680
+
"metadata": {},
681
+
"source": [
682
+
"Working with large data streams or files can be challenging due to memory limitations. Index slicing is not feasible for extremely large data sets as it requires the entire list to reside in memory.\n",
683
+
"\n",
684
+
"```python\n",
685
+
"# Load all log entries into memory as a list\n",
686
+
"large_log = [log_entry for log_entry in open(\"large_log_file.log\")]\n",
687
+
"\n",
688
+
"# Iterate over the first 100 entries of the list\n",
689
+
"for entry in large_log[:100]:\n",
690
+
" process_log_entry(entry)\n",
691
+
"```"
692
+
]
693
+
},
694
+
{
695
+
"cell_type": "markdown",
696
+
"id": "105480cf",
697
+
"metadata": {},
698
+
"source": [
699
+
"itertools.islice() allows you to process only a portion of the data stream at a time, without the need to load the entire dataset. This approach enables efficient data processing.\n",
700
+
"\n",
701
+
"\n",
702
+
"```python\n",
703
+
"import itertools\n",
704
+
"\n",
705
+
"# Lazily read file lines with a generator\n",
706
+
"large_log = (log_entry for log_entry in open(\"large_log_file.log\"))\n",
707
+
"\n",
708
+
"# Get the first 100 entries from the generator\n",
709
+
"for entry in itertools.islice(large_log, 100):\n",
0 commit comments