|
257 | 257 | },
|
258 | 258 | {
|
259 | 259 | "data": {
|
260 |
| - "application/javascript": [ |
261 |
| - "\n", |
262 |
| - " setTimeout(function() {\n", |
263 |
| - " var nbb_cell_id = 42;\n", |
264 |
| - " var nbb_unformatted_code = \"!pytest pytest_benchmark_example.py \";\n", |
265 |
| - " var nbb_formatted_code = \"!pytest pytest_benchmark_example.py\";\n", |
266 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
267 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
268 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
269 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
270 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
271 |
| - " }\n", |
272 |
| - " break;\n", |
273 |
| - " }\n", |
274 |
| - " }\n", |
275 |
| - " }, 500);\n", |
276 |
| - " " |
277 |
| - ], |
| 260 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 42;\n var nbb_unformatted_code = \"!pytest pytest_benchmark_example.py \";\n var nbb_formatted_code = \"!pytest pytest_benchmark_example.py\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
278 | 261 | "text/plain": [
|
279 | 262 | "<IPython.core.display.Javascript object>"
|
280 | 263 | ]
|
|
3597 | 3580 | },
|
3598 | 3581 | {
|
3599 | 3582 | "data": {
|
3600 |
| - "application/javascript": [ |
3601 |
| - "\n", |
3602 |
| - " setTimeout(function() {\n", |
3603 |
| - " var nbb_cell_id = 25;\n", |
3604 |
| - " var nbb_unformatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n", |
3605 |
| - " var nbb_formatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n", |
3606 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
3607 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
3608 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
3609 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
3610 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
3611 |
| - " }\n", |
3612 |
| - " break;\n", |
3613 |
| - " }\n", |
3614 |
| - " }\n", |
3615 |
| - " }, 500);\n", |
3616 |
| - " " |
3617 |
| - ], |
| 3583 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 25;\n var nbb_unformatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n var nbb_formatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
3618 | 3584 | "text/plain": [
|
3619 | 3585 | "<IPython.core.display.Javascript object>"
|
3620 | 3586 | ]
|
|
3666 | 3632 | },
|
3667 | 3633 | {
|
3668 | 3634 | "data": {
|
3669 |
| - "application/javascript": [ |
3670 |
| - "\n", |
3671 |
| - " setTimeout(function() {\n", |
3672 |
| - " var nbb_cell_id = 34;\n", |
3673 |
| - " var nbb_unformatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n", |
3674 |
| - " var nbb_formatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n", |
3675 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
3676 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
3677 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
3678 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
3679 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
3680 |
| - " }\n", |
3681 |
| - " break;\n", |
3682 |
| - " }\n", |
3683 |
| - " }\n", |
3684 |
| - " }, 500);\n", |
3685 |
| - " " |
3686 |
| - ], |
| 3635 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 34;\n var nbb_unformatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n var nbb_formatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
3687 | 3636 | "text/plain": [
|
3688 | 3637 | "<IPython.core.display.Javascript object>"
|
3689 | 3638 | ]
|
|
3997 | 3946 | "outputs": [
|
3998 | 3947 | {
|
3999 | 3948 | "data": {
|
4000 |
| - "application/javascript": [ |
4001 |
| - "\n", |
4002 |
| - " setTimeout(function() {\n", |
4003 |
| - " var nbb_cell_id = 18;\n", |
4004 |
| - " var nbb_unformatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n", |
4005 |
| - " var nbb_formatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n", |
4006 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4007 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4008 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4009 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4010 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4011 |
| - " }\n", |
4012 |
| - " break;\n", |
4013 |
| - " }\n", |
4014 |
| - " }\n", |
4015 |
| - " }, 500);\n", |
4016 |
| - " " |
4017 |
| - ], |
| 3949 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 18;\n var nbb_unformatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n var nbb_formatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4018 | 3950 | "text/plain": [
|
4019 | 3951 | "<IPython.core.display.Javascript object>"
|
4020 | 3952 | ]
|
|
4042 | 3974 | "outputs": [
|
4043 | 3975 | {
|
4044 | 3976 | "data": {
|
4045 |
| - "application/javascript": [ |
4046 |
| - "\n", |
4047 |
| - " setTimeout(function() {\n", |
4048 |
| - " var nbb_cell_id = 19;\n", |
4049 |
| - " var nbb_unformatted_code = \"train = pd.DataFrame({'col1': ['a', 'b', 'c']})\\ntest = pd.DataFrame({'col1': ['c', 'd', 'e']})\\n\\ntrain_ds = Dataset(train, cat_features=['col1'])\\ntest_ds = Dataset(test, cat_features=['col1'])\";\n", |
4050 |
| - " var nbb_formatted_code = \"train = pd.DataFrame({\\\"col1\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\"]})\\ntest = pd.DataFrame({\\\"col1\\\": [\\\"c\\\", \\\"d\\\", \\\"e\\\"]})\\n\\ntrain_ds = Dataset(train, cat_features=[\\\"col1\\\"])\\ntest_ds = Dataset(test, cat_features=[\\\"col1\\\"])\";\n", |
4051 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4052 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4053 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4054 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4055 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4056 |
| - " }\n", |
4057 |
| - " break;\n", |
4058 |
| - " }\n", |
4059 |
| - " }\n", |
4060 |
| - " }, 500);\n", |
4061 |
| - " " |
4062 |
| - ], |
| 3977 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 19;\n var nbb_unformatted_code = \"train = pd.DataFrame({'col1': ['a', 'b', 'c']})\\ntest = pd.DataFrame({'col1': ['c', 'd', 'e']})\\n\\ntrain_ds = Dataset(train, cat_features=['col1'])\\ntest_ds = Dataset(test, cat_features=['col1'])\";\n var nbb_formatted_code = \"train = pd.DataFrame({\\\"col1\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\"]})\\ntest = pd.DataFrame({\\\"col1\\\": [\\\"c\\\", \\\"d\\\", \\\"e\\\"]})\\n\\ntrain_ds = Dataset(train, cat_features=[\\\"col1\\\"])\\ntest_ds = Dataset(test, cat_features=[\\\"col1\\\"])\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4063 | 3978 | "text/plain": [
|
4064 | 3979 | "<IPython.core.display.Javascript object>"
|
4065 | 3980 | ]
|
|
4143 | 4058 | },
|
4144 | 4059 | {
|
4145 | 4060 | "data": {
|
4146 |
| - "application/javascript": [ |
4147 |
| - "\n", |
4148 |
| - " setTimeout(function() {\n", |
4149 |
| - " var nbb_cell_id = 22;\n", |
4150 |
| - " var nbb_unformatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n", |
4151 |
| - " var nbb_formatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n", |
4152 |
| - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4153 |
| - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4154 |
| - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4155 |
| - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4156 |
| - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4157 |
| - " }\n", |
4158 |
| - " break;\n", |
4159 |
| - " }\n", |
4160 |
| - " }\n", |
4161 |
| - " }, 500);\n", |
4162 |
| - " " |
4163 |
| - ], |
| 4061 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 22;\n var nbb_unformatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n var nbb_formatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4164 | 4062 | "text/plain": [
|
4165 | 4063 | "<IPython.core.display.Javascript object>"
|
4166 | 4064 | ]
|
|
4723 | 4621 | "celltoolbar": "Tags",
|
4724 | 4622 | "hide_input": false,
|
4725 | 4623 | "kernelspec": {
|
4726 |
| - "display_name": "Python 3 (ipykernel)", |
| 4624 | + "display_name": "Python 3", |
4727 | 4625 | "language": "python",
|
4728 | 4626 | "name": "python3"
|
4729 | 4627 | },
|
|
4737 | 4635 | "name": "python",
|
4738 | 4636 | "nbconvert_exporter": "python",
|
4739 | 4637 | "pygments_lexer": "ipython3",
|
4740 |
| - "version": "3.11.6" |
| 4638 | + "version": "3.11.2" |
4741 | 4639 | },
|
4742 | 4640 | "toc": {
|
4743 | 4641 | "base_numbering": 1,
|
|
4751 | 4649 | "toc_position": {},
|
4752 | 4650 | "toc_section_display": true,
|
4753 | 4651 | "toc_window_display": false
|
4754 |
| - }, |
4755 |
| - "vscode": { |
4756 |
| - "interpreter": { |
4757 |
| - "hash": "c3bc044b9863ed6dec4c55e7ad5af27f030f7d27aed3f39d7a4886a926c4e2c1" |
4758 |
| - } |
4759 | 4652 | }
|
4760 | 4653 | },
|
4761 | 4654 | "nbformat": 4,
|
|
0 commit comments