Skip to content

Commit dc5646d

Browse files
edit broken links
1 parent 89d9fd4 commit dc5646d

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,12 +29,12 @@ This repository is a curated collection of data science articles from CodeCut, c
2929
| Python Helper Tools | Write Clean Python Code Using Pipes | [🔗](https://codecut.ai/write-clean-python-code-using-pipes-3/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://deepnote.com/project/Data-science-hxlyJpi-QrKFJziQgoMSmQ/%2FData-science%2Fproductive_tools%2Fpipe.ipynb) | [🔗](https://youtu.be/K20_eZZGqsc) |
3030
| Python Helper Tools | Introducing FugueSQL — SQL for Pandas, Spark, and Dask DataFrames | [🔗](https://codecut.ai/introducing-fuguesql-sql-for-pandas-spark-and-dask-dataframes-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/fugueSQL.ipynb) | |
3131
| Python Helper Tools | Fugue and DuckDB: Fast SQL Code in Python | [🔗](https://codecut.ai/fugue-and-duckdb-fast-sql-code-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/productive_tools/Fugue_and_Duckdb/Fugue_and_Duckdb.ipynb) | |
32-
| Feature Engineering | Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames | [🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://khuyentran1401.github.io/Data-science/data_science_tools/polars_vs_pandas.html) | |
32+
| Feature Engineering | Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames | [🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://codecuttech.github.io/Data-science/data_science_tools/polars_vs_pandas.html) | |
3333
| Visualization | Top 6 Python Libraries for Visualization: Which one to Use? | [🔗](https://codecut.ai/top-6-python-libraries-for-visualization-which-one-to-use/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/visualization/top_visualization.ipynb) | |
3434
| Python | Python Clean Code: 6 Best Practices to Make Your Python Functions More Readable | [🔗](https://codecut.ai/python-clean-code-6-best-practices-to-make-your-python-functions-more-readable-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/python/good_functions) | [🔗](https://youtu.be/IDHD8JYBl5M) |
3535
| Logging and Debugging | Loguru: Simple as Print, Flexible as Logging | [🔗](https://codecut.ai/simplify-your-python-logging-with-loguru/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/productive_tools/logging_tools) | [🔗](https://youtu.be/XY_OrUoR-HU) |
36-
| LLM | Enforce Structured Outputs from LLMs with PydanticAI | [🔗](https://codecut.ai/enforce-structured-outputs-from-llms-with-pydanticai/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://khuyentran1401.github.io/Data-science/llm/pydantic_ai_examples.html) | |
37-
| Speed-up Tools | Writing Safer PySpark Queries with Parameters | [🔗](https://codecut.ai/pyspark-sql-enhancing-reusability-with-parameterized-queries/) | [🔗](https://khuyentran1401.github.io/Data-science/data_science_tools/pandas_api_on_spark.html) | |
36+
| LLM | Enforce Structured Outputs from LLMs with PydanticAI | [🔗](https://codecut.ai/enforce-structured-outputs-from-llms-with-pydanticai/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://codecuttech.github.io/Data-science/llm/pydantic_ai_examples.html) | |
37+
| Speed-up Tools | Writing Safer PySpark Queries with Parameters | [🔗](https://codecut.ai/pyspark-sql-enhancing-reusability-with-parameterized-queries/) | [🔗](https://codecuttech.github.io/Data-science/data_science_tools/pandas_api_on_spark.html) | |
3838

3939

4040
## Contributing

0 commit comments

Comments
 (0)