You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| Python Helper Tools | Introducing FugueSQL — SQL for Pandas, Spark, and Dask DataFrames |[🔗](https://codecut.ai/introducing-fuguesql-sql-for-pandas-spark-and-dask-dataframes-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/fugueSQL.ipynb)||
31
31
| Python Helper Tools | Fugue and DuckDB: Fast SQL Code in Python |[🔗](https://codecut.ai/fugue-and-duckdb-fast-sql-code-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/blob/master/productive_tools/Fugue_and_Duckdb/Fugue_and_Duckdb.ipynb)||
32
-
| Feature Engineering | Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames |[🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://khuyentran1401.github.io/Data-science/data_science_tools/polars_vs_pandas.html)||
32
+
| Feature Engineering | Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames |[🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://codecuttech.github.io/Data-science/data_science_tools/polars_vs_pandas.html)||
33
33
| Visualization | Top 6 Python Libraries for Visualization: Which one to Use? |[🔗](https://codecut.ai/top-6-python-libraries-for-visualization-which-one-to-use/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/visualization/top_visualization.ipynb)||
34
34
| Python | Python Clean Code: 6 Best Practices to Make Your Python Functions More Readable |[🔗](https://codecut.ai/python-clean-code-6-best-practices-to-make-your-python-functions-more-readable-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/python/good_functions)|[🔗](https://youtu.be/IDHD8JYBl5M)|
35
35
| Logging and Debugging | Loguru: Simple as Print, Flexible as Logging |[🔗](https://codecut.ai/simplify-your-python-logging-with-loguru/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/productive_tools/logging_tools)|[🔗](https://youtu.be/XY_OrUoR-HU)|
36
-
| LLM | Enforce Structured Outputs from LLMs with PydanticAI |[🔗](https://codecut.ai/enforce-structured-outputs-from-llms-with-pydanticai/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://khuyentran1401.github.io/Data-science/llm/pydantic_ai_examples.html)||
0 commit comments