You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| MLOps | Goodbye Pip and Poetry. Why UV Might Be All You Need |[🔗](https://codecut.ai/why-uv-might-all-you-need/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|||
16
-
| MLOps | Stop Hard Coding in a Data Science Project – Use Configuration Files Instead |[🔗](https://codecut.ai/stop-hard-coding-in-a-data-science-project-use-configuration-files-instead/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/hydra-demo)|[🔗](https://youtu.be/jaX9zrC7y4Y)|
16
+
| MLOps | Stop Hard Coding in a Data Science Project – Use Configuration Files Instead |[🔗](https://codecut.ai/stop-hard-coding-in-a-data-science-project-use-configuration-files-instead/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/hydra-demo)|[🔗](https://youtu.be/jaX9zrC7y4Y)|
17
17
| MLOps | Poetry: A Better Way to Manage Python Dependencies |[🔗](https://codecut.ai/poetry-a-better-way-to-manage-python-dependencies/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)||[🔗](https://youtu.be/-QSUyDvHQGY)|
18
18
| MLOps | Git for Data Scientists: Learn Git through Practical Examples |[🔗](https://codecut.ai/git-deep-dive-for-data-scientists/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)||[🔗](https://youtu.be/UKCTvrJSoL0)|
19
-
| MLOps | 4 pre-commit Plugins to Automate Code Reviewing and Formatting in Python |[🔗](https://codecut.ai/4-pre-commit-plugins-to-automate-code-reviewing-and-formatting-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/productive_tools/precommit_examples)|[🔗](https://youtube.com/playlist?list=PLnK6m_JBRVNqskWiXLxx1QRDDng9O8Fsf)|
20
-
| MLOps | How to Structure a Data Science Project for Maintainability |[🔗](https://codecut.ai/how-to-structure-a-data-science-project-for-readability-and-transparency-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/data-science-template/tree/dvc-poetry)|[🔗](https://youtu.be/TzvcPi3nsdw)|
19
+
| MLOps | 4 pre-commit Plugins to Automate Code Reviewing and Formatting in Python |[🔗](https://codecut.ai/4-pre-commit-plugins-to-automate-code-reviewing-and-formatting-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/productive_tools/precommit_examples)|[🔗](https://youtube.com/playlist?list=PLnK6m_JBRVNqskWiXLxx1QRDDng9O8Fsf)|
20
+
| MLOps | How to Structure a Data Science Project for Maintainability |[🔗](https://codecut.ai/how-to-structure-a-data-science-project-for-readability-and-transparency-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/data-science-template)|[🔗](https://youtu.be/TzvcPi3nsdw)|
| MLOps | How to Build a Fully Automated Data Drift Detection Pipeline |[🔗](https://codecut.ai/build-a-fully-automated-data-drift-detection-pipeline/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/detect-data-drift-pipeline)|[🔗](https://youtu.be/4w2ly3WuL40)|
24
-
| Data Management Tools | Version Control for Data and Models Using DVC |[🔗](https://codecut.ai/introduction-to-dvc-data-version-control-tool-for-machine-learning-projects-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/dvc-demo)|[🔗](https://youtu.be/80s_dbfiqLM)|
25
-
| Data Management Tools | What is dbt (data build tool) and When should you use it? |[🔗](https://codecut.ai/build-an-efficient-data-pipeline-is-dbt-the-key/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/dbt-demo)|[🔗](https://youtu.be/mM5zWBP3G_U)|
24
+
| Data Management Tools | Version Control for Data and Models Using DVC |[🔗](https://codecut.ai/introduction-to-dvc-data-version-control-tool-for-machine-learning-projects-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/dvc-demo)|[🔗](https://youtu.be/80s_dbfiqLM)|
25
+
| Data Management Tools | What is dbt (data build tool) and When should you use it? |[🔗](https://codecut.ai/build-an-efficient-data-pipeline-is-dbt-the-key/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/dbt-demo)|[🔗](https://youtu.be/mM5zWBP3G_U)|
26
26
| Data Management Tools | Streamline dbt Model Development with Notebook-Style Workspace |[🔗](https://codecut.ai/dbt-mage-interactively-build-and-orchestrate-data-models/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/dbt-mage)|[🔗](https://youtu.be/vQFg1Mp60-s)|
27
-
| Testing | Pytest for Data Scientists |[🔗](https://codecut.ai/pytest-for-data-scientists-3/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/data_science_tools/pytest)|[🔗](https://www.youtube.com/playlist?list=PLnK6m_JBRVNoYEer9hBmTNwkYB3gmbOPO)|
| Python Helper Tools | Introducing FugueSQL — SQL for Pandas, Spark, and Dask DataFrames |[🔗](https://codecut.ai/introducing-fuguesql-sql-for-pandas-spark-and-dask-dataframes-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/fugueSQL.ipynb)||
30
-
| Python Helper Tools | Fugue and DuckDB: Fast SQL Code in Python |[🔗](https://codecut.ai/fugue-and-duckdb-fast-sql-code-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/blob/master/productive_tools/Fugue_and_Duckdb/Fugue_and_Duckdb.ipynb)||
27
+
| Testing | Pytest for Data Scientists |[🔗](https://codecut.ai/pytest-for-data-scientists-3/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/data_science_tools/pytest)|[🔗](https://www.youtube.com/playlist?list=PLnK6m_JBRVNoYEer9hBmTNwkYB3gmbOPO)|
| Python Helper Tools | Introducing FugueSQL — SQL for Pandas, Spark, and Dask DataFrames |[🔗](https://codecut.ai/introducing-fuguesql-sql-for-pandas-spark-and-dask-dataframes-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/blob/master/data_science_tools/fugueSQL.ipynb)||
30
+
| Python Helper Tools | Fugue and DuckDB: Fast SQL Code in Python |[🔗](https://codecut.ai/fugue-and-duckdb-fast-sql-code-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/blob/master/productive_tools/Fugue_and_Duckdb/Fugue_and_Duckdb.ipynb)||
31
+
| Python Helper Tools | Marimo: A Modern Notebook for Reproducible Data Science |[🔗](https://codecut.ai/marimo-a-modern-notebook-for-reproducible-data-science/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/data_science_tools/marimo_examples)||
31
32
| Feature Engineering | Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames |[🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://codecuttech.github.io/Data-science/data_science_tools/polars_vs_pandas.html)||
32
-
| Visualization | Top 6 Python Libraries for Visualization: Which one to Use? |[🔗](https://codecut.ai/top-6-python-libraries-for-visualization-which-one-to-use/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/visualization/top_visualization.ipynb)||
33
-
| Python | Python Clean Code: 6 Best Practices to Make Your Python Functions More Readable |[🔗](https://codecut.ai/python-clean-code-6-best-practices-to-make-your-python-functions-more-readable-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/python/good_functions)|[🔗](https://youtu.be/IDHD8JYBl5M)|
34
-
| Logging and Debugging | Loguru: Simple as Print, Flexible as Logging |[🔗](https://codecut.ai/simplify-your-python-logging-with-loguru/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/khuyentran1401/Data-science/tree/master/productive_tools/logging_tools)|[🔗](https://youtu.be/XY_OrUoR-HU)|
33
+
| Visualization | Top 6 Python Libraries for Visualization: Which one to Use? |[🔗](https://codecut.ai/top-6-python-libraries-for-visualization-which-one-to-use/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/visualization/top_visualization.ipynb)||
34
+
| Python | Python Clean Code: 6 Best Practices to Make Your Python Functions More Readable |[🔗](https://codecut.ai/python-clean-code-6-best-practices-to-make-your-python-functions-more-readable-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/python/good_functions)|[🔗](https://youtu.be/IDHD8JYBl5M)|
35
+
| Logging and Debugging | Loguru: Simple as Print, Flexible as Logging |[🔗](https://codecut.ai/simplify-your-python-logging-with-loguru/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://github.com/codecuttech/Data-science/tree/master/productive_tools/logging_tools)|[🔗](https://youtu.be/XY_OrUoR-HU)|
35
36
| LLM | Enforce Structured Outputs from LLMs with PydanticAI |[🔗](https://codecut.ai/enforce-structured-outputs-from-llms-with-pydanticai/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)|[🔗](https://codecuttech.github.io/Data-science/llm/pydantic_ai_examples.html)||
0 commit comments