|
| 1 | +# /// script |
| 2 | +# requires-python = ">=3.11" |
| 3 | +# dependencies = [ |
| 4 | +# "marimo", |
| 5 | +# "nest-asyncio==1.6.0", |
| 6 | +# "openai==1.76.0", |
| 7 | +# "pandas==2.2.3", |
| 8 | +# "pydantic==2.11.3", |
| 9 | +# "pydantic-ai==0.1.4", |
| 10 | +# "pydantic-ai-slim[duckduckgo]==0.1.4", |
| 11 | +# ] |
| 12 | +# /// |
| 13 | + |
| 14 | +import marimo |
| 15 | + |
| 16 | +__generated_with = "0.13.0" |
| 17 | +app = marimo.App(width="medium") |
| 18 | + |
| 19 | + |
| 20 | +@app.cell(hide_code=True) |
| 21 | +def _(mo): |
| 22 | + mo.md(r"""# Introduction""") |
| 23 | + return |
| 24 | + |
| 25 | + |
| 26 | +@app.cell |
| 27 | +def _(): |
| 28 | + import marimo as mo |
| 29 | + |
| 30 | + return (mo,) |
| 31 | + |
| 32 | + |
| 33 | +@app.cell |
| 34 | +def _(): |
| 35 | + import os |
| 36 | + |
| 37 | + from openai import OpenAI |
| 38 | + |
| 39 | + client = OpenAI( |
| 40 | + api_key=os.environ.get("OPENAI_API_KEY"), |
| 41 | + ) |
| 42 | + |
| 43 | + response = client.responses.create( |
| 44 | + model="gpt-4o-mini-2024-07-18", |
| 45 | + instructions="Extract first name, last name, years of experience, and primary skill from the job applicant description.", |
| 46 | + input="Khuyen Tran is a data scientist with 5 years of experience, skilled in Python and machine learning.", |
| 47 | + ) |
| 48 | + |
| 49 | + print(response.output_text) |
| 50 | + return |
| 51 | + |
| 52 | + |
| 53 | +@app.cell(hide_code=True) |
| 54 | +def _(): |
| 55 | + # Core Workflow |
| 56 | + return |
| 57 | + |
| 58 | + |
| 59 | +@app.cell(hide_code=True) |
| 60 | +def _(): |
| 61 | + import nest_asyncio |
| 62 | + |
| 63 | + nest_asyncio.apply() |
| 64 | + return |
| 65 | + |
| 66 | + |
| 67 | +@app.cell |
| 68 | +def _(): |
| 69 | + from typing import List |
| 70 | + |
| 71 | + from pydantic import BaseModel |
| 72 | + from pydantic_ai import Agent |
| 73 | + |
| 74 | + return Agent, BaseModel, List |
| 75 | + |
| 76 | + |
| 77 | +@app.cell |
| 78 | +def _(BaseModel, List): |
| 79 | + class ApplicantProfile(BaseModel): |
| 80 | + first_name: str |
| 81 | + last_name: str |
| 82 | + experience_years: int |
| 83 | + primary_skill: List[str] |
| 84 | + |
| 85 | + return (ApplicantProfile,) |
| 86 | + |
| 87 | + |
| 88 | +@app.cell |
| 89 | +def _(Agent, ApplicantProfile): |
| 90 | + agent = Agent( |
| 91 | + "gpt-4o-mini-2024-07-18", |
| 92 | + system_prompt="Extract name, years of experience, and primary skill from the job applicant description.", |
| 93 | + output_type=ApplicantProfile, |
| 94 | + ) |
| 95 | + |
| 96 | + result = agent.run_sync( |
| 97 | + "Khuyen Tran is a data scientist with 5 years of experience, skilled in Python and machine learning." |
| 98 | + ) |
| 99 | + print(result.output) |
| 100 | + return (result,) |
| 101 | + |
| 102 | + |
| 103 | +@app.cell |
| 104 | +def _(result): |
| 105 | + result.output.model_dump() |
| 106 | + return |
| 107 | + |
| 108 | + |
| 109 | +@app.cell |
| 110 | +def _(result): |
| 111 | + import pandas as pd |
| 112 | + |
| 113 | + df = pd.DataFrame(result.output.model_dump()) |
| 114 | + df |
| 115 | + return (pd,) |
| 116 | + |
| 117 | + |
| 118 | +@app.cell(hide_code=True) |
| 119 | +def _(mo): |
| 120 | + mo.md(r"""# Using the DuckDuckGo Search Tool""") |
| 121 | + return |
| 122 | + |
| 123 | + |
| 124 | +@app.cell |
| 125 | +def _(BaseModel, List): |
| 126 | + class UnemploymentDataSource(BaseModel): |
| 127 | + title: List[str] |
| 128 | + description: List[str] |
| 129 | + url: List[str] |
| 130 | + |
| 131 | + return (UnemploymentDataSource,) |
| 132 | + |
| 133 | + |
| 134 | +@app.cell |
| 135 | +def _(Agent, UnemploymentDataSource): |
| 136 | + from pydantic_ai.common_tools.duckduckgo import duckduckgo_search_tool |
| 137 | + |
| 138 | + # Define the agent with DuckDuckGo search tool |
| 139 | + search_agent = Agent( |
| 140 | + "gpt-4o-mini-2024-07-18", |
| 141 | + tools=[duckduckgo_search_tool()], |
| 142 | + system_prompt="Search DuckDuckGo and return links or resources that match the query.", |
| 143 | + output_type=UnemploymentDataSource, |
| 144 | + ) |
| 145 | + |
| 146 | + # Run a search for unemployment rate dataset |
| 147 | + unemployment_result = search_agent.run_sync( |
| 148 | + "Monthly unemployment rate dataset for US from 2018 to 2024" |
| 149 | + ) |
| 150 | + |
| 151 | + print(unemployment_result.output) |
| 152 | + return (unemployment_result,) |
| 153 | + |
| 154 | + |
| 155 | +@app.cell |
| 156 | +def _(pd, unemployment_result): |
| 157 | + unemployment_df = pd.DataFrame(unemployment_result.output.model_dump()) |
| 158 | + unemployment_df |
| 159 | + return |
| 160 | + |
| 161 | + |
| 162 | +if __name__ == "__main__": |
| 163 | + app.run() |
0 commit comments