|
| 1 | +import marimo |
| 2 | + |
| 3 | +__generated_with = "0.13.7" |
| 4 | +app = marimo.App(width="medium") |
| 5 | + |
| 6 | + |
| 7 | +@app.cell |
| 8 | +def _(): |
| 9 | + import marimo as mo |
| 10 | + return (mo,) |
| 11 | + |
| 12 | + |
| 13 | +@app.cell |
| 14 | +def _(mo): |
| 15 | + mo.md( |
| 16 | + r""" |
| 17 | + # Dataframe-agnostic data science |
| 18 | +
|
| 19 | + Let's define a dataframe-agnostic function to calculate monthly average prices. It needs to support pandas, Polars, PySpark, DuckDB, PyArrow, Dask, and cuDF, without doing any conversion between libraries. |
| 20 | +
|
| 21 | + ## Bad solution: just convert to pandas |
| 22 | +
|
| 23 | + This kind of works, but: |
| 24 | +
|
| 25 | + - It doesn't return to the user the same class they started with. |
| 26 | + - It kills lazy execution. |
| 27 | + - It kills GPU acceleration. |
| 28 | + - If forces pandas as a required dependency. |
| 29 | + """ |
| 30 | + ) |
| 31 | + return |
| 32 | + |
| 33 | + |
| 34 | +@app.function |
| 35 | +def monthly_aggregate_bad(user_df): |
| 36 | + if hasattr(user_df, "to_pandas"): |
| 37 | + df = user_df.to_pandas() |
| 38 | + elif hasattr(user_df, "toPandas"): |
| 39 | + df = user_df.toPandas() |
| 40 | + elif hasattr(user_df, "_to_pandas"): |
| 41 | + df = user_df._to_pandas() |
| 42 | + return df.resample("MS", on="date")[["price"]].mean() |
| 43 | + |
| 44 | + |
| 45 | +@app.cell |
| 46 | +def _(mo): |
| 47 | + mo.md( |
| 48 | + r""" |
| 49 | + ## Unmaintainable solution: different branches for each library |
| 50 | +
|
| 51 | + This works, but is unfeasibly difficult to test and maintain, especially when also factoring in API changes between different versions of the same library (e.g. pandas `1.*` vs pandas `2.*`). |
| 52 | + """ |
| 53 | + ) |
| 54 | + return |
| 55 | + |
| 56 | + |
| 57 | +@app.cell |
| 58 | +def _(F): |
| 59 | + import pandas as pd |
| 60 | + import polars as pl |
| 61 | + import duckdb |
| 62 | + import pyspark |
| 63 | + |
| 64 | + |
| 65 | + def monthly_aggregate_unmaintainable(user_df): |
| 66 | + if isinstance(user_df, pd.DataFrame): |
| 67 | + result = user_df.resample("MS", on="date")[["price"]].mean() |
| 68 | + elif isinstance(user_df, pl.DataFrame): |
| 69 | + result = ( |
| 70 | + user_df.group_by(pl.col("date").dt.truncate("1mo")) |
| 71 | + .agg(pl.col("price").mean()) |
| 72 | + .sort("date") |
| 73 | + ) |
| 74 | + elif isinstance(user_df, pyspark.sql.dataframe.DataFrame): |
| 75 | + result = ( |
| 76 | + user_df.groupBy(F.date_trunc("month", F.col("date"))) |
| 77 | + .agg(F.mean("price")) |
| 78 | + .orderBy("date") |
| 79 | + ) |
| 80 | + elif isinstance(user_df, duckdb.DuckDBPyRelation): |
| 81 | + result = user_df.aggregate( |
| 82 | + [ |
| 83 | + duckdb.FunctionExpression( |
| 84 | + "time_bucket", |
| 85 | + duckdb.ConstantExpression("1 month"), |
| 86 | + duckdb.FunctionExpression("date"), |
| 87 | + ).alias("date"), |
| 88 | + duckdb.FunctionExpression("mean", "price").alias("price"), |
| 89 | + ], |
| 90 | + ).sort("date") |
| 91 | + # TODO: more branches for PyArrow, Dask, etc... :sob: |
| 92 | + return result |
| 93 | + return duckdb, pd, pl |
| 94 | + |
| 95 | + |
| 96 | +@app.cell |
| 97 | +def _(mo): |
| 98 | + mo.md( |
| 99 | + r""" |
| 100 | + ## Best solution: Narwhals as a unified dataframe interface |
| 101 | +
|
| 102 | + - Preserves lazy execution and GPU acceleration. |
| 103 | + - Users get back what they started with. |
| 104 | + - Easy to write and maintain. |
| 105 | + - Strong and complete static typing. |
| 106 | + """ |
| 107 | + ) |
| 108 | + return |
| 109 | + |
| 110 | + |
| 111 | +@app.cell |
| 112 | +def _(): |
| 113 | + import narwhals as nw |
| 114 | + from narwhals.typing import IntoFrameT |
| 115 | + |
| 116 | + |
| 117 | + def monthly_aggregate(user_df: IntoFrameT) -> IntoFrameT: |
| 118 | + return ( |
| 119 | + nw.from_native(user_df) |
| 120 | + .group_by(nw.col("date").dt.truncate("1mo")) |
| 121 | + .agg(nw.col("price").mean()) |
| 122 | + .sort("date") |
| 123 | + .to_native() |
| 124 | + ) |
| 125 | + return (monthly_aggregate,) |
| 126 | + |
| 127 | + |
| 128 | +@app.cell |
| 129 | +def _(mo): |
| 130 | + mo.md(r"""## Demo: let's verify that it works!""") |
| 131 | + return |
| 132 | + |
| 133 | + |
| 134 | +@app.cell |
| 135 | +def _(): |
| 136 | + from datetime import datetime |
| 137 | + |
| 138 | + data = { |
| 139 | + "date": [datetime(2020, 1, 1), datetime(2020, 1, 8), datetime(2020, 2, 3)], |
| 140 | + "price": [1, 4, 3], |
| 141 | + } |
| 142 | + return (data,) |
| 143 | + |
| 144 | + |
| 145 | +@app.cell |
| 146 | +def _(data, monthly_aggregate, pd): |
| 147 | + # pandas |
| 148 | + df_pd = pd.DataFrame(data) |
| 149 | + monthly_aggregate(df_pd) |
| 150 | + return (df_pd,) |
| 151 | + |
| 152 | + |
| 153 | +@app.cell |
| 154 | +def _(data, monthly_aggregate, pl): |
| 155 | + # Polars |
| 156 | + df_pl = pl.DataFrame(data) |
| 157 | + monthly_aggregate(df_pl) |
| 158 | + return |
| 159 | + |
| 160 | + |
| 161 | +@app.cell |
| 162 | +def _(duckdb, monthly_aggregate): |
| 163 | + # DuckDB |
| 164 | + rel = duckdb.sql(""" |
| 165 | + from values (timestamp '2020-01-01', 1), |
| 166 | + (timestamp '2020-01-08', 4), |
| 167 | + (timestamp '2020-02-03', 3) |
| 168 | + df(date, price) |
| 169 | + select * |
| 170 | + """) |
| 171 | + monthly_aggregate(rel) |
| 172 | + return |
| 173 | + |
| 174 | + |
| 175 | +@app.cell |
| 176 | +def _(data, monthly_aggregate): |
| 177 | + # PyArrow |
| 178 | + import pyarrow as pa |
| 179 | + |
| 180 | + tbl = pa.table(data) |
| 181 | + monthly_aggregate(tbl) |
| 182 | + return |
| 183 | + |
| 184 | + |
| 185 | +@app.cell |
| 186 | +def _(mo): |
| 187 | + mo.md( |
| 188 | + r""" |
| 189 | + ## Bonus - can we generate SQL? |
| 190 | +
|
| 191 | + Narwhals comes with an extra bonus feature: by combining it with [SQLFrame](https://github.com/eakmanrq/sqlframe), we can easily transpiling the Polars API to any major SQL dialect. For example, to translate to the DataBricks SQL dialect, we can do: |
| 192 | + """ |
| 193 | + ) |
| 194 | + return |
| 195 | + |
| 196 | + |
| 197 | +@app.cell |
| 198 | +def _(df_pd, monthly_aggregate): |
| 199 | + from sqlframe.duckdb import DuckDBSession |
| 200 | + |
| 201 | + sqlframe = DuckDBSession() |
| 202 | + sqlframe_df = sqlframe.createDataFrame(df_pd) |
| 203 | + sqlframe_result = monthly_aggregate(sqlframe_df) |
| 204 | + print(sqlframe_result.sql(dialect="databricks")) |
| 205 | + return |
| 206 | + |
| 207 | + |
| 208 | +@app.cell |
| 209 | +def _(): |
| 210 | + return |
| 211 | + |
| 212 | + |
| 213 | +if __name__ == "__main__": |
| 214 | + app.run() |
0 commit comments