You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[](https://github.com/khuyentran1401/Data-science)[](https://codecut.ai/?utm_source=github&utm_medium=data_science_repo&utm_campaign=github_badge)[](https://www.youtube.com/channel/UCNMawpMow-lW5d2svGhOEbw)
6
6
@@ -17,7 +17,7 @@ To download the code in this repo, you can simply use git clone
| How to Build a Fully Automated Data Drift Detection Pipeline | [🔗](https://codecut.ai/build-a-fully-automated-data-drift-detection-pipeline/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/detect-data-drift-pipeline) | [🔗](https://youtu.be/4w2ly3WuL40)
|Introduction to DVC: Data Version Control Tool for Machine Learning Projects | [🔗](https://codecut.ai/introduction-to-dvc-data-version-control-tool-for-machine-learning-projects-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Machine-learning-pipeline) | [🔗](https://youtu.be/80s_dbfiqLM)
| What is dbt (data build tool) and When should you use it? | [🔗](https://codecut.ai/build-an-efficient-data-pipeline-is-dbt-the-key/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/dbt-demo)| [🔗](https://youtu.be/mM5zWBP3G_U)
87
87
| Streamline dbt Model Development with Notebook-Style Workspace | [🔗](https://codecut.ai/dbt-mage-interactively-build-and-orchestrate-data-models/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/dbt-mage) | [🔗](https://youtu.be/vQFg1Mp60-s)
| Detect Defects in a Data Pipeline Early with Validation and Notifications | [🔗](https://towardsdatascience.com/detect-defects-in-a-data-pipeline-early-with-validation-and-notifications-83e9b652e65a) | [🔗](https://github.com/khuyentran1401/prefect2-mlops-demo/tree/deepchecks) | [🔗](https://youtu.be/HdPViOX8Uf8)
98
98
| Write Readable Tests for Your Machine Learning Models with Behave | [🔗](https://towardsdatascience.com/write-readable-tests-for-your-machine-learning-models-with-behave-ec4a27b91490) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/data_science_tools/behave_examples) | [🔗](https://youtu.be/gUttUxyNbIA)
| Simplify Data Science Workflows on BigQuery with Fugue and Python | [🔗](https://towardsdatascience.com/simplify-data-science-workflows-on-bigquery-with-fugue-and-python-5215a1b65e43) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/fugue_bigquery.ipynb)
120
120
121
121
122
-
# Tools for Deployment
122
+
##Tools for Deployment
123
123
124
124
| Title | Article | Repository |
125
125
| ------------- |:-------------:| :-----:|
126
126
| How to Effortlessly Publish your Python Package to PyPI Using Poetry | [🔗](https://towardsdatascience.com/how-to-effortlessly-publish-your-python-package-to-pypi-using-poetry-44b305362f9f) | [🔗](https://github.com/khuyentran1401/pretty-text)
127
127
| Typer: Build Powerful CLIs in One Line of Code using Python | [🔗](https://towardsdatascience.com/typer-build-powerful-clis-in-one-line-of-code-using-python-321d9aef3be8) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/terminal/typer_examples)
128
128
129
129
130
-
# Speed-up Tools
130
+
##Speed-up Tools
131
131
132
132
| Title | Article | Repository |
133
133
| ------------- |:-------------:| :-----:|
134
134
| Cython-A Speed-Up Tool for your Python Function |[🔗](https://towardsdatascience.com/cython-a-speed-up-tool-for-your-python-function-9bab64364bfd)|[🔗](https://github.com/khuyentran1401/Cython)|
135
135
| Train your Machine Learning Model 150x Faster with cuML | [🔗](https://towardsdatascience.com/train-your-machine-learning-model-150x-faster-with-cuml-69d0768a047a) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/machine-learning/cuml)
136
136
137
137
138
-
# Math Tools
138
+
##Math Tools
139
139
140
140
| Title | Article | Repository |
141
141
| ------------- |:-------------:| :-----:|
142
142
| SymPy: Symbolic Computation in Python | [🔗](https://towardsdatascience.com/sympy-symbolic-computation-in-python-f05f1413adb8) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/sympy_example.ipynb)
| Human-Learn: Rule-Based Learning as an Alternative to Machine Learning | [🔗](https://towardsdatascience.com/human-learn-rule-based-learning-as-an-alternative-to-machine-learning-baf1899ecb3a) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/machine-learning/human_learn_examples/rule_based_model.ipynb) | [🔗](https://youtu.be/JF-bC6JYJsw)
| Texthero: Text Preprocessing, Representation, and Visualization for a pandas DataFrame | [🔗](https://towardsdatascience.com/texthero-text-preprocessing-representation-and-visualization-for-a-pandas-dataframe-525405af16b6) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/nlp/texthero)
180
180
181
-
# Computer Vision
181
+
##Computer Vision
182
182
183
183
| Title | Article | Repository |
184
184
| ------------- |:-------------:| :-----:|
185
185
| How to Create an App to Classify Dogs Using fastai and Streamlit | [🔗](https://towardsdatascience.com/how-to-create-an-app-to-classify-dogs-using-fastai-and-streamlit-af3e75f0ee28) | [🔗](https://github.com/khuyentran1401/dog_classifier)
186
186
187
-
# Time Series
187
+
##Time Series
188
188
189
189
| Title | Article | Repository |
190
190
| ------------- |:-------------:| :-----:|
191
191
| Kats: a Generalizable Framework to Analyze Time Series Data in Python | [🔗](https://towardsdatascience.com/kats-a-generalizable-framework-to-analyze-time-series-data-in-python-3c8d21efe057) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/time_series/kats_examples/kats.ipynb)
192
192
| How to Detect Seasonality, Outliers, and Changepoints in Your Time Series | [🔗](https://towardsdatascience.com/how-to-detect-seasonality-outliers-and-changepoints-in-your-time-series-5d0901498cff) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/time_series/google_analytics/google-analytics-analysis.ipynb)
193
193
| 4 Tools to Automatically Extract Data from Datetime in Python | [🔗](https://towardsdatascience.com/4-tools-to-automatically-extract-data-from-datetime-in-python-9ecf44943f89) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/time_series/extract_date_features.ipynb)
| Snorkel — A Human-In-The-Loop Platform to Build Training Data | [🔗](https://towardsdatascience.com/snorkel-programmatically-build-training-data-in-python-712fc39649fe) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/feature_engineering/snorkel_example) | [🔗](https://youtu.be/Prr53wXiHfM)
| How to Schedule Flights in Python | [🔗](https://towardsdatascience.com/how-to-schedule-flights-in-python-3357b200db9e) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/mathematical_programming/schedule_flight_crew/flight_crew_schedule.ipynb)
242
242
| How to Solve a Production Planning and Inventory Problem in Python | [🔗](https://towardsdatascience.com/how-to-solve-a-production-planning-and-inventory-problem-in-python-45c546f4bcf0) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/mathematical_programming/production_and_inventory.ipynb)
| Simplify Your Functions with Functools’ Partial and Singledispatch | [🔗](https://towardsdatascience.com/simplify-your-functions-with-functools-partial-and-singledispatch-b7071f7543bb) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/python/functools%20example.ipynb)
| Python and Data Science Snippets on the Command Line | [🔗](https://towardsdatascience.com/python-and-data-science-snippets-on-the-command-line-2673d5d9e55d) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/applications/python_snippet_tutorial)
| Bayesian Linear Regression with Bambi | [🔗](https://towardsdatascience.com/bayesian-linear-regression-with-bambi-a5e6570f167b) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/statistics/bayes_linear_regression/linear_regression.ipynb)
300
300
| Earn More Salary as a Coder — Higher Degree or More Years of Experience? | [🔗](https://towardsdatascience.com/earn-more-salary-as-a-coder-higher-degree-or-more-years-of-experience-68c13f73a557) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/statistics/stackoverflow_survey/analyze_salary.ipynb)
301
301
302
-
# Linear Algebra
302
+
##Linear Algebra
303
303
304
304
| Title | Article | Repository |
305
305
| ------------- |:-------------:| :-----:|
306
306
| How to Build a Matrix Module from Scratch |[🔗](https://towardsdatascience.com/how-to-build-a-matrix-module-from-scratch-a4f35ec28b56)|[🔗](https://github.com/khuyentran1401/Numerical-Optimization-Machine-learning/tree/master/matrix)|
307
307
| Linear Algebra for Machine Learning: Solve a System of Linear Equations |[🔗](https://towardsdatascience.com/linear-algebra-for-machine-learning-solve-a-system-of-linear-equations-3ec7e882e10f)|[🔗](https://github.com/khuyentran1401/Numerical-Optimization-Machine-learning/blob/master/Backward%20substitution%20and%20Gaussian%20Elimiation.ipynb)|
| How to Find the Nearest Hospital with a Voronoi Diagram | [🔗](https://towardsdatascience.com/how-to-find-the-nearest-hospital-with-voronoi-diagram-63bd6d0b7b75) | [🔗](https://github.com/khuyentran1401/Voronoi-diagram/)
| Create an App to Deal with Boredom Using PyWebIO | [🔗](https://towardsdatascience.com/create-an-app-to-deal-with-boredom-using-pywebio-d17f3acd1613) | [🔗](https://build.pyweb.io/get/khuyentran1401/bored_app)
329
329
| Build a Robust Workflow to Visualize Trending GitHub Repositories in Python | [🔗](https://towardsdatascience.com/build-a-robust-workflow-to-visualize-trending-github-repositories-in-python-98f2fc3e9a86) | [🔗](https://github.com/khuyentran1401/analyze_github_feed)
| How to Share your Jupyter Notebook in 3 Lines of Code with Ngrok |[🔗](https://towardsdatascience.com/how-to-share-your-jupyter-notebook-in-3-lines-of-code-with-ngrok-bfe1495a9c0c)|
340
340
| Introduction to Deepnote: Real-time Collaboration on Jupyter Notebook | [🔗](https://pub.towardsai.net/introduction-to-deepnote-real-time-collaboration-on-jupyter-notebook-18509c95d62f)
341
341
342
-
# Cool Tools
342
+
##Cool Tools
343
343
344
344
| Title | Article | Repository |
345
345
| ------------- |:-------------:| :-----:|
346
346
| Simulate Real-life Events in Python Using SimPy | [🔗](https://towardsdatascience.com/simulate-real-life-events-in-python-using-simpy-e6d9152a102f) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/applications/simpy_examples)
347
347
| How to Create Mathematical Animations like 3Blue1Brown Using Python |[🔗](https://towardsdatascience.com/how-to-create-mathematical-animations-like-3blue1brown-using-python-f571fb9da3d1) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/visualization/manim_exp)
| To become a Better Data Scientist, you need to Think like a Programmer |[🔗](https://towardsdatascience.com/to-become-a-better-data-scientist-you-need-to-think-like-a-programmer-18d0a00994dc)|
356
356
| How not to be Overwhelmed with Data Science | [🔗](https://towardsdatascience.com/how-not-to-be-overwhelmed-with-data-science-5a95ff1618f8)
| 7 Reasons Why you Should Start Documenting your Code | [🔗](https://towardsdatascience.com/7-reasons-why-you-should-start-documenting-your-code-48c2096de6a7)
| Top 9 Keyboard Shortcuts in VSCode for Data Scientists |[🔗](https://towardsdatascience.com/top-9-keyboard-shortcuts-in-vscode-for-data-scientists-468691b65ebe)|
376
376
377
377
378
-
# Book Review
378
+
##Book Review
379
379
380
380
| Title | Article | Repository |
381
381
| ------------- |:-------------:| :-----:|
382
382
| Python Machine Learning: A Comprehensive Handbook for Machine Learning |[🔗](https://medium.com/analytics-vidhya/python-machine-learning-a-comprehensive-handbook-for-machine-learning-63f024c898d0)|
0 commit comments