|
| 1 | +# To implement a single flexible mapreduce, let's define |
| 2 | +# a `OnesArray` that has nothing, and always returns 1: |
| 3 | +struct OnesArray{T, N} <: AbstractArray{T, N} end |
| 4 | +OnesArray(x::AbstractArray) = OnesArray{eltype(x), ndims(x)}() |
| 5 | +Base.@propagate_inbounds Base.getindex(::OnesArray, inds...) = 1 |
| 6 | +Base.parent(x::OnesArray) = x |
| 7 | + |
| 8 | +function mapreduce_cuda( |
| 9 | + f, |
| 10 | + op, |
| 11 | + data::DataLayouts.DataF; |
| 12 | + weighted_jacobian = OnesArray(parent(data)), |
| 13 | + opargs..., |
| 14 | +) |
| 15 | + pdata = parent(data) |
| 16 | + S = eltype(data) |
| 17 | + return DataLayouts.DataF{S}(Array(Array(f(pdata))[1, :])) |
| 18 | +end |
| 19 | + |
| 20 | +function mapreduce_cuda( |
| 21 | + f, |
| 22 | + op, |
| 23 | + data::Union{DataLayouts.VF, DataLayouts.IJFH, DataLayouts.VIJFH}; |
| 24 | + weighted_jacobian = OnesArray(parent(data)), |
| 25 | + opargs..., |
| 26 | +) |
| 27 | + S = eltype(data) |
| 28 | + pdata = parent(data) |
| 29 | + T = eltype(pdata) |
| 30 | + (Ni, Nj, Nk, Nv, Nh) = size(data) |
| 31 | + Nf = div(length(pdata), prod(size(data))) # length of field dimension |
| 32 | + pwt = parent(weighted_jacobian) |
| 33 | + |
| 34 | + nitems = Nv * Ni * Nj * Nk * Nh |
| 35 | + max_threads = 256# 512 1024 |
| 36 | + nthreads = min(max_threads, nitems) |
| 37 | + # perform n ops during loading to shmem (this is a tunable parameter) |
| 38 | + n_ops_on_load = cld(nitems, nthreads) == 1 ? 0 : 7 |
| 39 | + effective_blksize = nthreads * (n_ops_on_load + 1) |
| 40 | + nblocks = cld(nitems, effective_blksize) |
| 41 | + |
| 42 | + reduce_cuda = CuArray{T}(undef, nblocks, Nf) |
| 43 | + shmemsize = nthreads |
| 44 | + # place each field on a different block |
| 45 | + @cuda always_inline = true threads = (nthreads) blocks = (nblocks, Nf) mapreduce_cuda_kernel!( |
| 46 | + reduce_cuda, |
| 47 | + f, |
| 48 | + op, |
| 49 | + pdata, |
| 50 | + pwt, |
| 51 | + n_ops_on_load, |
| 52 | + Val(shmemsize), |
| 53 | + ) |
| 54 | + # reduce block data |
| 55 | + if nblocks > 1 |
| 56 | + nthreads = min(32, nblocks) |
| 57 | + shmemsize = nthreads |
| 58 | + @cuda always_inline = true threads = (nthreads) blocks = (Nf) reduce_cuda_blocks_kernel!( |
| 59 | + reduce_cuda, |
| 60 | + op, |
| 61 | + Val(shmemsize), |
| 62 | + ) |
| 63 | + end |
| 64 | + return DataLayouts.DataF{S}(Array(Array(reduce_cuda)[1, :])) |
| 65 | +end |
| 66 | + |
| 67 | +function mapreduce_cuda_kernel!( |
| 68 | + reduce_cuda::AbstractArray{T, 2}, |
| 69 | + f, |
| 70 | + op, |
| 71 | + pdata::AbstractArray{T, N}, |
| 72 | + pwt::AbstractArray{T, N}, |
| 73 | + n_ops_on_load::Int, |
| 74 | + ::Val{shmemsize}, |
| 75 | +) where {T, N, shmemsize} |
| 76 | + blksize = blockDim().x |
| 77 | + nblk = gridDim().x |
| 78 | + tidx = threadIdx().x |
| 79 | + bidx = blockIdx().x |
| 80 | + fidx = blockIdx().y |
| 81 | + dataview = _dataview(pdata, fidx) |
| 82 | + effective_blksize = blksize * (n_ops_on_load + 1) |
| 83 | + gidx = _get_gidx(tidx, bidx, effective_blksize) |
| 84 | + reduction = CUDA.CuStaticSharedArray(T, shmemsize) |
| 85 | + reduction[tidx] = 0 |
| 86 | + (Nv, Nij, Nf, Nh) = _get_dims(dataview) |
| 87 | + nitems = Nv * Nij * Nij * Nf * Nh |
| 88 | + |
| 89 | + # load shmem |
| 90 | + if gidx ≤ nitems |
| 91 | + reduction[tidx] = f(dataview[gidx]) * pwt[gidx] |
| 92 | + for n_ops in 1:n_ops_on_load |
| 93 | + gidx2 = _get_gidx(tidx + blksize * n_ops, bidx, effective_blksize) |
| 94 | + if gidx2 ≤ nitems |
| 95 | + reduction[tidx] = |
| 96 | + op(reduction[tidx], f(dataview[gidx2]) * pwt[gidx2]) |
| 97 | + end |
| 98 | + end |
| 99 | + end |
| 100 | + sync_threads() |
| 101 | + _cuda_intrablock_reduce!(op, reduction, tidx, blksize) |
| 102 | + |
| 103 | + tidx == 1 && (reduce_cuda[bidx, fidx] = reduction[1]) |
| 104 | + return nothing |
| 105 | +end |
| 106 | + |
| 107 | +@inline function _get_gidx(tidx, bidx, effective_blksize) |
| 108 | + return tidx + (bidx - 1) * effective_blksize |
| 109 | +end |
| 110 | +# for VF DataLayout |
| 111 | +@inline function _get_dims(pdata::AbstractArray{FT, 2}) where {FT} |
| 112 | + (Nv, Nf) = size(pdata) |
| 113 | + return (Nv, 1, Nf, 1) |
| 114 | +end |
| 115 | +@inline _dataview(pdata::AbstractArray{FT, 2}, fidx) where {FT} = |
| 116 | + view(pdata, :, fidx:fidx) |
| 117 | + |
| 118 | +# for IJFH DataLayout |
| 119 | +@inline function _get_dims(pdata::AbstractArray{FT, 4}) where {FT} |
| 120 | + (Nij, _, Nf, Nh) = size(pdata) |
| 121 | + return (1, Nij, Nf, Nh) |
| 122 | +end |
| 123 | +@inline _dataview(pdata::AbstractArray{FT, 4}, fidx) where {FT} = |
| 124 | + view(pdata, :, :, fidx:fidx, :) |
| 125 | + |
| 126 | +# for VIJFH DataLayout |
| 127 | +@inline function _get_dims(pdata::AbstractArray{FT, 5}) where {FT} |
| 128 | + (Nv, Nij, _, Nf, Nh) = size(pdata) |
| 129 | + return (Nv, Nij, Nf, Nh) |
| 130 | +end |
| 131 | +@inline _dataview(pdata::AbstractArray{FT, 5}, fidx) where {FT} = |
| 132 | + view(pdata, :, :, :, fidx:fidx, :) |
| 133 | + |
| 134 | +@inline function _cuda_reduce!(op, reduction, tidx, reduction_size, N) |
| 135 | + if reduction_size > N |
| 136 | + if tidx ≤ reduction_size - N |
| 137 | + @inbounds reduction[tidx] = op(reduction[tidx], reduction[tidx + N]) |
| 138 | + end |
| 139 | + N > 32 && sync_threads() |
| 140 | + return N |
| 141 | + end |
| 142 | + return reduction_size |
| 143 | +end |
| 144 | + |
| 145 | +function reduce_cuda_blocks_kernel!( |
| 146 | + reduce_cuda::AbstractArray{T, 2}, |
| 147 | + op, |
| 148 | + ::Val{shmemsize}, |
| 149 | +) where {T, shmemsize} |
| 150 | + blksize = blockDim().x |
| 151 | + fidx = blockIdx().x |
| 152 | + tidx = threadIdx().x |
| 153 | + nitems = size(reduce_cuda, 1) |
| 154 | + nloads = cld(nitems, blksize) - 1 |
| 155 | + reduction = CUDA.CuStaticSharedArray(T, shmemsize) |
| 156 | + |
| 157 | + reduction[tidx] = reduce_cuda[tidx, fidx] |
| 158 | + |
| 159 | + for i in 1:nloads |
| 160 | + idx = tidx + blksize * i |
| 161 | + if idx ≤ nitems |
| 162 | + reduction[tidx] = op(reduction[tidx], reduce_cuda[idx, fidx]) |
| 163 | + end |
| 164 | + end |
| 165 | + |
| 166 | + blksize > 32 && sync_threads() |
| 167 | + _cuda_intrablock_reduce!(op, reduction, tidx, blksize) |
| 168 | + |
| 169 | + tidx == 1 && (reduce_cuda[1, fidx] = reduction[1]) |
| 170 | + return nothing |
| 171 | +end |
| 172 | + |
| 173 | +@inline function _cuda_intrablock_reduce!(op, reduction, tidx, blksize) |
| 174 | + # assumes max_threads ≤ 1024 which is the current max on any CUDA device |
| 175 | + newsize = _cuda_reduce!(op, reduction, tidx, blksize, 512) |
| 176 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 256) |
| 177 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 128) |
| 178 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 64) |
| 179 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 32) |
| 180 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 16) |
| 181 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 8) |
| 182 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 4) |
| 183 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 2) |
| 184 | + newsize = _cuda_reduce!(op, reduction, tidx, newsize, 1) |
| 185 | + return nothing |
| 186 | +end |
0 commit comments