Skip to content

Branching

Chetabahana edited this page Jun 22, 2020 · 98 revisions

Branching adalah mekanisma pembuatan cabang dan melanjutkan melakukan proses pada cabang yang baru tersebut tanpa perlu khawatir mengacaukan sumbernya.

Table of Contents

Kasus

Pada bagian ini kita akan bahas tentang algoritma pada aplikasi dan kaitannya dengan Masalah Riemann Hypotjesis yang merupakan masalah terbuka penting saat ini.


Kasus ini bersumber ke tesis tentang dugaan teori distribusi bilangan yang diajukan Bernhard Riemann berjudul Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse yang dipublikasikan di Monatsberichte der Berliner Akademie, November 1859.

Walaupun sudah banyak makalah diajukan namun belum ada yang dapat diterima karena target utamanya adalah suatu fungsi yang terbukti dapat mengukur distribusi dari bilangan prima yang sayangnya belum dimiliki oleh ilmu matematik sampai saat ini.

The solution is not only to prove Re(z)= 1/2 but also to calculate ways for the imaginary part of the complex root of ζ(z)=0 and also to solve the Functional equations of Riemann

Model

Berikut akan diuraikan mengenai permasalahan yang terkait pada kasus ini, detil dokumentasi bisa Anda telusuri di pustaka maths.tcd.ie.

Track

Batas

Histori

Koleksi

Korelasi

Formasi

Resolusi

Interaksi

Kendala

Atribut

Trace

Keyword: Prime
  1. A Proof of the Riemann Hypothesis and Determination of the Relationship Between Non- Trivial Zeros of Zeta Functions and Prime Numbers (Lihat No. 19)
  2. Modeling the creative process of the mind by prime numbers and a simple proof of the Riemann Hypothesis (Lihat No. 25)
No Keyword: Prime
  1. The Riemann hypothesis is true up to 3 x 1012
  2. General infinite series evaluations involving Fibonacci numbers and the Riemann Zeta function
Non arXiv

Prinsip

Pada makalah dengan judul The Riemann hypothesis is true up to 3 x 1012 tercatat pernyataan sebagai berikut:

Theorem 1. The Riemann hypothesis is true up to height 3 000 175 332 800. That is, the lowest 12 363 153 437 138 non-trivial zeroes ρ have ℜρ = 1/2.

Corollary 2. We have Λ ≤ 0.2. The next entry in Table 1 of [24] is conditional on taking H a little higher than 1013, which of course, is not achieved by Theorem 1. This would enable one to prove Λ < 0.19. Given that our value of H falls between the entries in this table, it is possible that some extra decimals could be wrought out of the calculation. We have not pursued this.

Jika kedua pernyataan di atas adalah benar maka secara matematis Hipotesa Riemann ini terbukti tidak benar karena hanya berlaku pada kasus atau batasan tertentu.

Dilain pihak kemungkinan didapatkannya fungsi distribusi bilangan prima menjadi mundur lagi kebelakang, perlu kajian signifikan untuk ditelusuri..

Atau mungkin mulai lagi dari Fungsi Euleur (simak artikelnya).

Artifact

Delivery

Realisasi

Properti

Orientasi

Objective

Pemetaan

Metoda

Sizing

Sorting

Akurasi

Looping

Optimasi

Validasi

Capturing

Directions

Referensi

Clone this wiki locally