-
Notifications
You must be signed in to change notification settings - Fork 10
Description
Hello, thank you very much for your open source efficientNet-ssd structure. I configure it according to your instructions. All steps and compilation are fine. But the following mistakes occurred in the training:
W0716 21:07:45.322222 139932370933568 model_lib.py:634] Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs
= 0. Overwriting num_e pochs
to 1.
I0716 21:07:45.322298 139932370933568 model_lib.py:669] create_estimator_and_inputs: use_tpu False, export_to_tpu False
I0716 21:07:45.322627 139932370933568 estimator.py:209] Using config: {'_model_dir': 'object_detection/ssd_efficient_model/training/', '_tf_random_seed': None, '_save_summary_steps': 100
, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute':
None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f4
43b160390>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas':
1}
W0716 21:07:45.322852 139932370933568 model_fn.py:630] Estimator's model_fn (<function create_model_fn..model_fn at 0x7f443b15ebf8>) includes params argument, but params are not
passed to Estimator.
I0716 21:07:45.323519 139932370933568 estimator_training.py:186] Not using Distribute Coordinator.
I0716 21:07:45.323671 139932370933568 training.py:612] Running training and evaluation locally (non-distributed).
I0716 21:07:45.323882 139932370933568 training.py:700] Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
raise ValueError("name for name_scope must be a string.")
ValueError: name for name_scope must be a string.