Skip to content

Commit 83eb915

Browse files
2 parents a7b9de8 + 702e249 commit 83eb915

File tree

4 files changed

+331
-0
lines changed

4 files changed

+331
-0
lines changed
Lines changed: 331 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,331 @@
1+
<!DOCTYPE html>
2+
<html lang="en">
3+
<head>
4+
<meta charset="utf-8" />
5+
<meta
6+
name="viewport"
7+
content="width=device-width, initial-scale=1, shrink-to-fit=no" />
8+
<meta
9+
name="description"
10+
content="Develop an interactive chatbot utilizing the Natural Language Toolkit (NLTK) to facilitate text analysis and generate appropriate responses. This intelligent chatbot is designed to participate in fundamental dialogues and provide answers to commonly posed inquiries, showcasing proficiency in natural language processing and text classification techniques. Leveraging NLTK’s robust features, the chatbot exemplifies the practical application of these skills in creating conversational AI interfaces." />
11+
<meta
12+
name="keywords"
13+
content="Chatbot, Interactive, NLTK, Text Analysis, Response Generation, Dialogue, FAQ, NLP, Text Classification, Conversational AI" />
14+
<title>
15+
ChatBot with NLTK
16+
</title>
17+
<meta name="vaishali-sharma" content="CSEdge" />
18+
<!-- Favicon-->
19+
<link
20+
rel="icon"
21+
type="image/x-icon"
22+
href="https://csedge.courses/Images/CSEDGE-LOGO32X32.png" />
23+
<!-- Core theme CSS (includes Bootstrap)-->
24+
<link href="../styles.css" rel="stylesheet" />
25+
</head>
26+
<body>
27+
28+
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
29+
<div class="container">
30+
<img
31+
height="32px"
32+
width="32px"
33+
src="https://csedge.courses/Images/CSEDGE-LOGO32X32.png"
34+
alt="logo" />
35+
<a class="navbar-brand" href="../.././index.html">CSEdge Learn</a>
36+
<button
37+
class="navbar-toggler"
38+
type="button"
39+
data-bs-toggle="collapse"
40+
data-bs-target="#navbarSupportedContent"
41+
aria-controls="navbarSupportedContent"
42+
aria-expanded="false"
43+
aria-label="Toggle navigation">
44+
<span class="navbar-toggler-icon"></span>
45+
</button>
46+
<div class="collapse navbar-collapse" id="navbarSupportedContent">
47+
<ul class="navbar-nav ms-auto mb-2 mb-lg-0">
48+
<li class="nav-item">
49+
<a class="nav-link" href="https://learn.csedge.courses">Home</a>
50+
</li>
51+
<li class="nav-item">
52+
<a class="nav-link" href="https://csedge.courses/about">About</a>
53+
</li>
54+
<li class="nav-item">
55+
<a class="nav-link" href="https://csedge.courses#contact"
56+
>Contact</a
57+
>
58+
</li>
59+
<li class="nav-item">
60+
<a
61+
class="nav-link active"
62+
aria-current="page"
63+
href="https://learn.csedge.courses"
64+
>Blog</a
65+
>
66+
</li>
67+
</ul>
68+
</div>
69+
</div>
70+
</nav>
71+
<div class="container mb-4 mt-4">
72+
<div class="row">
73+
<!-- Blog entries-->
74+
<div class="col-lg-8">
75+
<h1>
76+
Building an Intelligent Chatbot with NLTK
77+
</h1>
78+
<!-- Featured blog post-->
79+
<div class="card mb-4">
80+
<img
81+
class="card-img-top"
82+
src="../images/chatbot.png"
83+
alt="ChatBot-with-NLTK" />
84+
<div class="card-body">
85+
<main class="container">
86+
<section>
87+
88+
<p>
89+
Creating a chatbot involves understanding and processing human language, which can be achieved through Natural Language Processing (NLP). Python’s NLTK library is a powerful tool for NLP that provides easy-to-use interfaces to over 50 corpora and lexical resources.
90+
</p>
91+
<br>
92+
<h2>Step-by-Step Guide:</h2> <br>
93+
<img
94+
class="card-img-top"
95+
src="../images/flowchart-chatbot.png"
96+
alt="flowchat-chatbot" />
97+
<br>
98+
<br>
99+
<ol>
100+
<li><h5>Environment Setup:</h5></li>
101+
<ul>
102+
<li><strong>Python installation:</strong> Ensure you have Python installed on your system. Python 3.x versions are recommended. </li>
103+
<li><strong>NLTK Installation:</strong> Install the NLTK package using pip:<br>
104+
<code>
105+
pip install nltk<br>
106+
</code>
107+
</li>
108+
<li><strong>Data Sets and Tokenizers:</strong> Download necessary NLTK data sets and tokenizers which are essential for processing natural language: <br>
109+
<br><strong>Python Code</strong> <br><code>
110+
<pre>
111+
import nltk
112+
nltk.download('popular')
113+
</pre>
114+
</code>
115+
</li>
116+
</ul>
117+
<li><h5>Designing Conversaiton Patters:</h5></li>
118+
<ul>
119+
<li><strong>Patterns and Intents: </strong>Define a dictionary with various intents such as ‘greetings’, ‘goodbyes’, and ‘faq’. Each intent contains a list of possible patterns and responses:<br>
120+
<br><strong>Python Code</strong> <br><code>
121+
<pre>
122+
CONVERSATION_PATTERNS = {
123+
"greetings": {
124+
"patterns": ["hello", "hi", "hey"],
125+
"responses": ["Hello!", "Hi there!", "Hey!"]
126+
},
127+
"goodbyes": {
128+
"patterns": ["bye", "goodbye", "see you"],
129+
"responses": ["Goodbye!", "See you later!", "Bye!"]
130+
},
131+
// Add more intents as needed
132+
}
133+
</pre>
134+
</code></li>
135+
</ul>
136+
<li><h5>Text Processing:</h5></li>
137+
<ul>
138+
<li>
139+
<strong>Tokenization: </strong>Split the text into individual words or tokens.
140+
</li>
141+
<li><strong>Stemming and Lemmatization: </strong> Reduce words to their root form to understand the general meaning without tense or plurality.<br>
142+
<br><strong>Python Code</strong> <br><code>
143+
<pre>
144+
from nltk.stem import WordNetLemmatizer
145+
lemmatizer = WordNetLemmatizer()
146+
147+
def process_input(input_text):
148+
tokens = nltk.word_tokenize(input_text)
149+
lemmas = [lemmatizer.lemmatize(token.lower()) for token in tokens]
150+
return lemmas
151+
</pre>
152+
</code></li>
153+
</ul>
154+
<li><h5>Classification Model:</h5></li>
155+
<ul>
156+
<li><strong>Training Data Preparation: </strong> Prepare the dta for training by associating each pattern with its corresponding intent.</li>
157+
<li><strong>Model Training: </strong>Use a classification algorithm like Naive Bayes to train the model on the prepared data.<br>
158+
<br><strong>Python Code</strong> <br>
159+
<code>
160+
<pre>
161+
from nltk import NaiveBayesClassifier
162+
163+
def train_classifier(patterns):
164+
training_data = []
165+
for intent, data in patterns.items():
166+
for pattern in data['patterns']:
167+
tokens = process_input(pattern)
168+
training_data.append((tokens, intent))
169+
classifier = NaiveBayesClassifier.train(training_data)
170+
return classifier
171+
</pre></code></li>
172+
</ul>
173+
<li><h5>Response Generation:</h5></li>
174+
<ul>
175+
<li><strong>Response Selection: </strong> Based on the classified intent, select an appropriate response from the predefined list.</li>
176+
<li><strong>Chatbot Functionality: </strong> Implement the chatbot functionality that takes user input, processes it, classifies it, and then generates a response.
177+
<br><br><strong>Python Code</strong> <br>
178+
<code>
179+
<pre>
180+
import random
181+
182+
def generate_response(classifier, user_input):
183+
category = classifier.classify(process_input(user_input))
184+
if category in CONVERSATION_PATTERNS:
185+
return random.choice(CONVERSATION_PATTERNS[category]['responses'])
186+
else:
187+
return "I'm not sure how to respond to that."
188+
189+
// Example usage:
190+
classifier = train_classifier(CONVERSATION_PATTERNS)
191+
user_input = "hello"
192+
print(generate_response(classifier, user_input))</pre>
193+
</code></li>
194+
</ul>
195+
</ol>
196+
</section>
197+
<br>
198+
<section>
199+
<h3>Integrating Web Scraping:</h3>
200+
<p>With your interest in web scraping and HTML parsing, you can enhance your chatbot by integrating real-time data extraction. For instance, you could use BeautifulSoup to scrape news headlines or weather information and provide it as part of the chatbot’s responses.</p>
201+
202+
<h3>Conclusion:</h3>
203+
<p> Building a chatbot with NLTK is an enriching experience that hones your skills in NLP. It lays the groundwork for more complex AI projects and opens up possibilities for integrating various functionalities like web scraping.</p></section>
204+
</main>
205+
</div>
206+
</div>
207+
</div>
208+
<!-- Side widgets-->
209+
<div class="col-lg-4">
210+
<!-- Search widget-->
211+
<div class="card mb-4">
212+
<div class="card-header">Search</div>
213+
<div class="card-body">
214+
<div class="input-group">
215+
<input
216+
class="form-control"
217+
type="text"
218+
id="searchInput"
219+
placeholder="Enter search term..."
220+
aria-label="Enter search term..."
221+
aria-describedby="button-search" />
222+
<button
223+
class="btn btn-primary"
224+
id="button-search"
225+
type="button"
226+
onclick="search()">
227+
Go!
228+
</button>
229+
</div>
230+
</div>
231+
<!-- Search Results -->
232+
<div id="searchResults"></div>
233+
</div>
234+
<!-- Categories widget-->
235+
<div class="card mb-4">
236+
<div class="card-header">Categories</div>
237+
<div class="card-body">
238+
<div class="row">
239+
<div class="col-sm-6">
240+
<ul class="list-unstyled mb-0">
241+
<li><a href="#!">Web Design</a></li>
242+
<li><a href="#!">HTML</a></li>
243+
<li><a href="#!">Freebies</a></li>
244+
</ul>
245+
</div>
246+
<div class="col-sm-6">
247+
<ul class="list-unstyled mb-0">
248+
<li><a href="#!">JavaScript</a></li>
249+
<li><a href="#!">CSS</a></li>
250+
<li><a href="#!">Tutorials</a></li>
251+
</ul>
252+
</div>
253+
</div>
254+
</div>
255+
</div>
256+
<!-- Side widget-->
257+
<div class="card mb-4">
258+
<div class="card-header">Recent Posts</div>
259+
<div class="card-body">
260+
<p>Coming Soon..!</p>
261+
</div>
262+
</div>
263+
<div class="card mb-4">
264+
<div class="card-body">
265+
<script
266+
async
267+
src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-8930077947690409"
268+
crossorigin="anonymous"></script>
269+
<ins
270+
class="adsbygoogle"
271+
style="display: block"
272+
data-ad-format="fluid"
273+
data-ad-layout-key="-fb+5w+4e-db+86"
274+
data-ad-client="ca-pub-8930077947690409"
275+
data-ad-slot="9866674087"></ins>
276+
<script>
277+
(adsbygoogle = window.adsbygoogle || []).push({});
278+
</script>
279+
<script
280+
async
281+
src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-8930077947690409"
282+
crossorigin="anonymous"></script>
283+
<ins
284+
class="adsbygoogle"
285+
style="display: block"
286+
data-ad-format="fluid"
287+
data-ad-layout-key="-fb+5w+4e-db+86"
288+
data-ad-client="ca-pub-8930077947690409"
289+
data-ad-slot="9866674087"></ins>
290+
<script>
291+
(adsbygoogle = window.adsbygoogle || []).push({});
292+
</script>
293+
<script
294+
async
295+
src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-8930077947690409"
296+
crossorigin="anonymous"></script>
297+
<ins
298+
class="adsbygoogle"
299+
style="display: block"
300+
data-ad-format="fluid"
301+
data-ad-layout-key="-fb+5w+4e-db+86"
302+
data-ad-client="ca-pub-8930077947690409"
303+
data-ad-slot="9866674087"></ins>
304+
<script>
305+
(adsbygoogle = window.adsbygoogle || []).push({});
306+
</script>
307+
</div>
308+
</div>
309+
</div>
310+
</div>
311+
</div>
312+
<!-- Footer-->
313+
<footer class="py-5 bg-dark">
314+
<div class="container">
315+
<p class="m-0 text-center text-white">
316+
Copyright &copy CSEdge Learn 2024
317+
</p>
318+
</div>
319+
</footer>
320+
<!-- Bootstrap core JS-->
321+
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/bootstrap.bundle.min.js"></script>
322+
<!-- Core theme JS-->
323+
<script src="../script.js"></script>
324+
</body>
325+
</html>
326+
327+
328+
</div>
329+
</div>
330+
</body>
331+
</html>
83.9 KB
Loading

posts/images/Monitors.png

430 KB
Loading

posts/images/WebScrapingImage.png

398 KB
Loading

0 commit comments

Comments
 (0)