@@ -129,9 +129,9 @@ class Matrix3X3
129
129
* @param rhs
130
130
* @return
131
131
*/
132
- Matrix3X3 & multiplyInPlace (SelfType& rhs)
132
+ SelfType & multiplyInPlace (SelfType& rhs)
133
133
{
134
- Matrix3X3 outMat;
134
+ SelfType outMat;
135
135
outMat[0 ] = m_Data[0 ] * rhs[0 ] + m_Data[1 ] * rhs[3 ] + m_Data[2 ] * rhs[6 ];
136
136
outMat[1 ] = m_Data[0 ] * rhs[1 ] + m_Data[1 ] * rhs[4 ] + m_Data[2 ] * rhs[7 ];
137
137
outMat[2 ] = m_Data[0 ] * rhs[2 ] + m_Data[1 ] * rhs[5 ] + m_Data[2 ] * rhs[8 ];
@@ -150,9 +150,9 @@ class Matrix3X3
150
150
* @param rhs
151
151
* @param outMat
152
152
*/
153
- Matrix3X3 operator +(const Matrix3X3& rhs) const
153
+ SelfType operator +(const Matrix3X3& rhs) const
154
154
{
155
- Matrix3X3 outMat;
155
+ SelfType outMat;
156
156
outMat[0 ] = m_Data[0 ] + rhs[0 ];
157
157
outMat[1 ] = m_Data[1 ] + rhs[1 ];
158
158
outMat[2 ] = m_Data[2 ] + rhs[2 ];
@@ -170,9 +170,9 @@ class Matrix3X3
170
170
* @param rhs
171
171
* @param outMat
172
172
*/
173
- Matrix3X3 operator -(const Matrix3X3 & rhs) const
173
+ SelfType operator -(const SelfType & rhs) const
174
174
{
175
- Matrix3X3 outMat;
175
+ SelfType outMat;
176
176
outMat[0 ] = m_Data[0 ] - rhs[0 ];
177
177
outMat[1 ] = m_Data[1 ] - rhs[1 ];
178
178
outMat[2 ] = m_Data[2 ] - rhs[2 ];
@@ -217,7 +217,7 @@ class Matrix3X3
217
217
* @brief Multiplies each element of a 3x1 matrix by a scalar value and returns the result
218
218
* @param scalar to multiply each element by.
219
219
*/
220
- Matrix3X3 operator *(T scalar)
220
+ SelfType operator *(T scalar)
221
221
{
222
222
return {
223
223
m_Data[0 ] * scalar, m_Data[1 ] * scalar, m_Data[2 ] * scalar, m_Data[3 ] * scalar, m_Data[4 ] * scalar, m_Data[5 ] * scalar, m_Data[6 ] * scalar, m_Data[7 ] * scalar, m_Data[8 ] * scalar,
@@ -230,9 +230,9 @@ class Matrix3X3
230
230
* @param outMat
231
231
*/
232
232
233
- Matrix3X3 transpose () const
233
+ SelfType transpose () const
234
234
{
235
- Matrix3X3 outMat;
235
+ SelfType outMat;
236
236
outMat[0 ] = m_Data[0 ];
237
237
outMat[1 ] = m_Data[3 ];
238
238
outMat[2 ] = m_Data[6 ];
@@ -249,7 +249,7 @@ class Matrix3X3
249
249
* @brief Inverts the 3x3 matrix and returns the result
250
250
* @return outMat
251
251
*/
252
- void invert ()
252
+ SelfType invert ()
253
253
{
254
254
SelfType adjoint = this ->adjoint ();
255
255
T oneOverDeterminant = 1.0 / this ->determinant ();
@@ -261,7 +261,7 @@ class Matrix3X3
261
261
* @return outMat
262
262
*/
263
263
264
- void adjoint ()
264
+ SelfType adjoint ()
265
265
{
266
266
SelfType temp = this ->cofactor ();
267
267
return temp.transpose ();
@@ -274,7 +274,7 @@ class Matrix3X3
274
274
275
275
SelfType cofactor () const
276
276
{
277
- SelfType temp = this ->minors3X3 ();
277
+ SelfType temp = this ->minors ();
278
278
SelfType outMat;
279
279
280
280
// Row 0
@@ -292,14 +292,14 @@ class Matrix3X3
292
292
return outMat;
293
293
}
294
294
295
- /* *
295
+ /* *b
296
296
* @brief Calculates the matrix of minors of the 3x3 matrix and places the result into outMat
297
297
* @return outMat
298
298
*/
299
299
300
- Matrix3X3 minors ()
300
+ SelfType minors () const
301
301
{
302
- Matrix3X3 outMat;
302
+ SelfType outMat;
303
303
outMat[0 ] = m_Data[4 ] * m_Data[8 ] - m_Data[7 ] * m_Data[5 ];
304
304
outMat[1 ] = m_Data[3 ] * m_Data[8 ] - m_Data[6 ] * m_Data[5 ];
305
305
outMat[2 ] = m_Data[3 ] * m_Data[7 ] - m_Data[6 ] * m_Data[4 ];
@@ -329,7 +329,7 @@ class Matrix3X3
329
329
* @param g
330
330
*/
331
331
332
- Matrix3X3 identity ()
332
+ SelfType identity ()
333
333
{
334
334
return {1 .0f , 0 .0f , 0 .0f , 0 .0f , 1 .0f , 0 .0f , 0 .0f , 0 .0f , 1 .0f };
335
335
}
@@ -339,7 +339,7 @@ class Matrix3X3
339
339
* @param g
340
340
*/
341
341
342
- Matrix3X3 normalize () const
342
+ SelfType normalize () const
343
343
{
344
344
T denom = m_Data[0 ] * m_Data[0 ] + m_Data[3 ] * m_Data[3 ] + m_Data[6 ] * m_Data[6 ];
345
345
if (denom == 0.0 )
0 commit comments