|
1 |
| -''' |
2 |
| -该模块为前向传播网路,定义网络结构 |
3 |
| -''' |
4 |
| -import tensorflow as tf |
5 |
| - |
6 |
| -CONV_SIZE = 5#卷积核大小 |
7 |
| - |
8 |
| -# 各层通道数 |
9 |
| -CONV1_KERNEL_NUM = 64 |
10 |
| -CONV2_KERNEL_NUM = 64 |
11 |
| -CONV3_KERNEL_NUM = 64 |
12 |
| -CONV4_KERNEL_NUM = 64 |
13 |
| -CONV5_KERNEL_NUM = 64 |
14 |
| -CONV6_KERNEL_NUM = 64 |
15 |
| -CONV7_KERNEL_NUM = 64 |
16 |
| -CONV8_KERNEL_NUM = 64 |
17 |
| -CONV9_KERNEL_NUM = 64 |
18 |
| -CONV10_KERNEL_NUM = 64 |
19 |
| -CONV11_KERNEL_NUM = 64 |
20 |
| -CONV12_KERNEL_NUM = 1 |
21 |
| - |
22 |
| -# 生成卷积核,权重w |
23 |
| -def get_weight(shape, regularizer=None): |
24 |
| - '''生成卷积核,卷积核形状shape,权重w由正态分布产生''' |
25 |
| - w = tf.Variable(tf.truncated_normal(shape, stddev=0.01)) |
26 |
| - if regularizer != None: |
27 |
| - tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) |
28 |
| - return w |
29 |
| - |
30 |
| -# 生成偏置项 |
31 |
| -def get_bias(shape): |
32 |
| - '''初始化0偏置项b''' |
33 |
| - b = tf.Variable(tf.zeros(shape)) |
34 |
| - return b |
35 |
| - |
36 |
| -def conv2d(x,w): |
37 |
| - ''' |
38 |
| - 定义卷积操作 |
39 |
| - x:输入图片 |
40 |
| - w:卷积核 |
41 |
| - strides:移动步长,左右上下移动步长为1 |
42 |
| - padding:0填充操作,为了卷积操作后图片维度与原来相等 |
43 |
| - ''' |
44 |
| - return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') |
45 |
| - |
46 |
| - |
47 |
| -# 定义前向传播网络,按照文章的ResNet |
48 |
| -def forward(x, channel, regularizer=None): |
49 |
| - |
50 |
| - # 第1个卷积层 |
51 |
| - conv1_w = get_weight([CONV_SIZE, CONV_SIZE, channel, CONV1_KERNEL_NUM], regularizer) |
52 |
| - conv1_b = get_bias([CONV1_KERNEL_NUM]) |
53 |
| - conv1 = conv2d(x, conv1_w) |
54 |
| - conv1_op = tf.nn.bias_add(conv1, conv1_b) |
55 |
| - |
56 |
| - # 第1个激活 |
57 |
| - relu1 = tf.nn.relu(conv1_op) |
58 |
| - |
59 |
| - # 第2个卷积层 |
60 |
| - conv2_w = get_weight([CONV_SIZE, CONV_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer) |
61 |
| - conv2_b = get_bias([CONV2_KERNEL_NUM]) |
62 |
| - conv2 = conv2d(relu1, conv2_w) |
63 |
| - conv2_op = tf.nn.bias_add(conv2, conv2_b) |
64 |
| - |
65 |
| - # 第2个激活 |
66 |
| - relu2 = tf.nn.relu(conv2_op) |
67 |
| - |
68 |
| - # 第3个卷积层 |
69 |
| - conv3_w = get_weight([CONV_SIZE, CONV_SIZE, CONV2_KERNEL_NUM, CONV3_KERNEL_NUM], regularizer) |
70 |
| - conv3_b = get_bias([CONV3_KERNEL_NUM]) |
71 |
| - conv3 = conv2d(relu2, conv3_w) |
72 |
| - conv3_op = tf.nn.bias_add(conv3,conv3_b) |
73 |
| - |
74 |
| - # 第1个add层 |
75 |
| - add1 = tf.add(conv3_op, conv1_op) |
76 |
| - |
77 |
| - # 第3个激活层 |
78 |
| - relu3 = tf.nn.relu(add1) |
79 |
| - |
80 |
| - # 第4个卷积层 |
81 |
| - conv4_w = get_weight([CONV_SIZE, CONV_SIZE, CONV3_KERNEL_NUM, CONV4_KERNEL_NUM], regularizer) |
82 |
| - conv4_b = get_bias([CONV4_KERNEL_NUM]) |
83 |
| - conv4 = conv2d(relu3, conv4_w) |
84 |
| - conv4_op = tf.nn.bias_add(conv4, conv4_b) |
85 |
| - |
86 |
| - # 第4个激活层 |
87 |
| - relu4 = tf.nn.relu(conv4_op) |
88 |
| - |
89 |
| - # 第5个卷积层 |
90 |
| - conv5_w = get_weight([CONV_SIZE, CONV_SIZE, CONV4_KERNEL_NUM, CONV5_KERNEL_NUM], regularizer) |
91 |
| - conv5_b = get_bias([CONV5_KERNEL_NUM]) |
92 |
| - conv5 = conv2d(relu4, conv5_w) |
93 |
| - conv5_op = tf.nn.bias_add(conv5, conv5_b) |
94 |
| - |
95 |
| - # 第2个add层 |
96 |
| - add2 = tf.add(conv5_op, add1) |
97 |
| - |
98 |
| - # 第5个激活层 |
99 |
| - relu5 = tf.nn.relu(add2) |
100 |
| - |
101 |
| - # 第6个卷积层 |
102 |
| - conv6_w = get_weight([CONV_SIZE, CONV_SIZE, CONV5_KERNEL_NUM, CONV6_KERNEL_NUM], regularizer) |
103 |
| - conv6_b = get_bias([CONV6_KERNEL_NUM]) |
104 |
| - conv6 = conv2d(relu5, conv6_w) |
105 |
| - conv6_op = tf.nn.bias_add(conv6, conv6_b) |
106 |
| - |
107 |
| - # 第6个激活层 |
108 |
| - relu6 = tf.nn.relu(conv6_op) |
109 |
| - |
110 |
| - # 第7个卷积层 |
111 |
| - conv7_w = get_weight([CONV_SIZE, CONV_SIZE, CONV6_KERNEL_NUM, CONV7_KERNEL_NUM], regularizer) |
112 |
| - conv7_b = get_bias([CONV7_KERNEL_NUM]) |
113 |
| - conv7 = conv2d(relu6, conv7_w) |
114 |
| - conv7_op = tf.nn.bias_add(conv7, conv7_b) |
115 |
| - |
116 |
| - # 第3个add层 |
117 |
| - add3 = tf.add(conv7_op, add2) |
118 |
| - |
119 |
| - # 第7个激活层 |
120 |
| - relu7 = tf.nn.relu(add3) |
121 |
| - |
122 |
| - # 第8个卷积层 |
123 |
| - conv8_w = get_weight([CONV_SIZE, CONV_SIZE, CONV7_KERNEL_NUM, CONV8_KERNEL_NUM], regularizer) |
124 |
| - conv8_b = get_bias([CONV8_KERNEL_NUM]) |
125 |
| - conv8 = conv2d(relu7, conv8_w) |
126 |
| - conv8_op = tf.nn.bias_add(conv8, conv8_b) |
127 |
| - |
128 |
| - # 第8个激活层 |
129 |
| - relu8 = tf.nn.relu(conv8_op) |
130 |
| - |
131 |
| - # 第9个卷积层 |
132 |
| - conv9_w = get_weight([CONV_SIZE, CONV_SIZE, CONV8_KERNEL_NUM, CONV9_KERNEL_NUM], regularizer) |
133 |
| - conv9_b = get_bias([CONV9_KERNEL_NUM]) |
134 |
| - conv9 = conv2d(relu8, conv9_w) |
135 |
| - conv9_op = tf.nn.bias_add(conv9, conv9_b) |
136 |
| - |
137 |
| - # 第4个add层 |
138 |
| - add4 = tf.add(conv9_op, add3) |
139 |
| - |
140 |
| - # 第9个激活层 |
141 |
| - relu9 = tf.nn.relu(add4) |
142 |
| - |
143 |
| - # 第10个卷积层 |
144 |
| - conv10_w = get_weight([CONV_SIZE, CONV_SIZE, CONV9_KERNEL_NUM, CONV10_KERNEL_NUM], regularizer) |
145 |
| - conv10_b = get_bias([CONV10_KERNEL_NUM]) |
146 |
| - conv10 = conv2d(relu9, conv10_w) |
147 |
| - conv10_op = tf.nn.bias_add(conv10, conv10_b) |
148 |
| - |
149 |
| - # 第10个激活层 |
150 |
| - relu10 = tf.nn.relu(conv10_op) |
151 |
| - |
152 |
| - # 第11个卷积层 |
153 |
| - conv11_w = get_weight([CONV_SIZE, CONV_SIZE, CONV10_KERNEL_NUM, CONV11_KERNEL_NUM], regularizer) |
154 |
| - conv11_b = get_bias([CONV11_KERNEL_NUM]) |
155 |
| - conv11 = conv2d(relu10, conv11_w) |
156 |
| - conv11_op = tf.nn.bias_add(conv11, conv11_b) |
157 |
| - |
158 |
| - # 第5个add层 |
159 |
| - add5 = tf.add(conv11_op, add4) |
160 |
| - |
161 |
| - # 第11个激活层 |
162 |
| - relu11 = tf.nn.relu(add5) |
163 |
| - |
164 |
| - # 第12个卷积层 |
165 |
| - conv12_w = get_weight([CONV_SIZE, CONV_SIZE, CONV11_KERNEL_NUM, CONV12_KERNEL_NUM], regularizer) |
166 |
| - conv12_b = get_bias([CONV12_KERNEL_NUM]) |
167 |
| - conv12 = conv2d(relu11, conv12_w) |
168 |
| - conv12_op = tf.nn.bias_add(conv12, conv12_b) |
169 |
| - |
170 |
| - # 输出结果 |
171 |
| - return conv12_op |
| 1 | +''' |
| 2 | +该模块为前向传播网路,定义网络结构 |
| 3 | +''' |
| 4 | +import tensorflow as tf |
| 5 | + |
| 6 | +CONV_SIZE = 5#卷积核大小 |
| 7 | + |
| 8 | +# 各层通道数 |
| 9 | +CONV1_KERNEL_NUM = 64 |
| 10 | +CONV2_KERNEL_NUM = 64 |
| 11 | +CONV3_KERNEL_NUM = 64 |
| 12 | +CONV4_KERNEL_NUM = 64 |
| 13 | +CONV5_KERNEL_NUM = 64 |
| 14 | +CONV6_KERNEL_NUM = 64 |
| 15 | +CONV7_KERNEL_NUM = 64 |
| 16 | +CONV8_KERNEL_NUM = 64 |
| 17 | +CONV9_KERNEL_NUM = 64 |
| 18 | +CONV10_KERNEL_NUM = 64 |
| 19 | +CONV11_KERNEL_NUM = 64 |
| 20 | +CONV12_KERNEL_NUM = 1 |
| 21 | + |
| 22 | +# 生成卷积核,权重w |
| 23 | +def get_weight(shape, regularizer=None): |
| 24 | + '''生成卷积核,卷积核形状shape,权重w由正态分布产生''' |
| 25 | + w = tf.Variable(tf.truncated_normal(shape, stddev=0.01)) |
| 26 | + if regularizer != None: |
| 27 | + tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) |
| 28 | + return w |
| 29 | + |
| 30 | +# 生成偏置项 |
| 31 | +def get_bias(shape): |
| 32 | + '''初始化0偏置项b''' |
| 33 | + b = tf.Variable(tf.zeros(shape)) |
| 34 | + return b |
| 35 | + |
| 36 | +def conv2d(x,w): |
| 37 | + ''' |
| 38 | + 定义卷积操作 |
| 39 | + x:输入图片 |
| 40 | + w:卷积核 |
| 41 | + strides:移动步长,左右上下移动步长为1 |
| 42 | + padding:0填充操作,为了卷积操作后图片维度与原来相等 |
| 43 | + ''' |
| 44 | + return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') |
| 45 | + |
| 46 | + |
| 47 | +# 定义前向传播网络,按照文章的ResNet |
| 48 | +def forward(x, channel, regularizer=None): |
| 49 | + |
| 50 | + # 第1个卷积层 |
| 51 | + conv1_w = get_weight([CONV_SIZE, CONV_SIZE, channel, CONV1_KERNEL_NUM], regularizer) |
| 52 | + conv1_b = get_bias([CONV1_KERNEL_NUM]) |
| 53 | + conv1 = conv2d(x, conv1_w) |
| 54 | + conv1_op = tf.nn.bias_add(conv1, conv1_b) |
| 55 | + |
| 56 | + # 第1个激活 |
| 57 | + relu1 = tf.nn.relu(conv1_op) |
| 58 | + |
| 59 | + # 第2个卷积层 |
| 60 | + conv2_w = get_weight([CONV_SIZE, CONV_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer) |
| 61 | + conv2_b = get_bias([CONV2_KERNEL_NUM]) |
| 62 | + conv2 = conv2d(relu1, conv2_w) |
| 63 | + conv2_op = tf.nn.bias_add(conv2, conv2_b) |
| 64 | + |
| 65 | + # 第2个激活 |
| 66 | + relu2 = tf.nn.relu(conv2_op) |
| 67 | + |
| 68 | + # 第3个卷积层 |
| 69 | + conv3_w = get_weight([CONV_SIZE, CONV_SIZE, CONV2_KERNEL_NUM, CONV3_KERNEL_NUM], regularizer) |
| 70 | + conv3_b = get_bias([CONV3_KERNEL_NUM]) |
| 71 | + conv3 = conv2d(relu2, conv3_w) |
| 72 | + conv3_op = tf.nn.bias_add(conv3,conv3_b) |
| 73 | + |
| 74 | + # 第1个add层 |
| 75 | + add1 = tf.add(conv3_op, conv1_op) |
| 76 | + |
| 77 | + # 第3个激活层 |
| 78 | + relu3 = tf.nn.relu(add1) |
| 79 | + |
| 80 | + # 第4个卷积层 |
| 81 | + conv4_w = get_weight([CONV_SIZE, CONV_SIZE, CONV3_KERNEL_NUM, CONV4_KERNEL_NUM], regularizer) |
| 82 | + conv4_b = get_bias([CONV4_KERNEL_NUM]) |
| 83 | + conv4 = conv2d(relu3, conv4_w) |
| 84 | + conv4_op = tf.nn.bias_add(conv4, conv4_b) |
| 85 | + |
| 86 | + # 第4个激活层 |
| 87 | + relu4 = tf.nn.relu(conv4_op) |
| 88 | + |
| 89 | + # 第5个卷积层 |
| 90 | + conv5_w = get_weight([CONV_SIZE, CONV_SIZE, CONV4_KERNEL_NUM, CONV5_KERNEL_NUM], regularizer) |
| 91 | + conv5_b = get_bias([CONV5_KERNEL_NUM]) |
| 92 | + conv5 = conv2d(relu4, conv5_w) |
| 93 | + conv5_op = tf.nn.bias_add(conv5, conv5_b) |
| 94 | + |
| 95 | + # 第2个add层 |
| 96 | + add2 = tf.add(conv5_op, add1) |
| 97 | + |
| 98 | + # 第5个激活层 |
| 99 | + relu5 = tf.nn.relu(add2) |
| 100 | + |
| 101 | + # 第6个卷积层 |
| 102 | + conv6_w = get_weight([CONV_SIZE, CONV_SIZE, CONV5_KERNEL_NUM, CONV6_KERNEL_NUM], regularizer) |
| 103 | + conv6_b = get_bias([CONV6_KERNEL_NUM]) |
| 104 | + conv6 = conv2d(relu5, conv6_w) |
| 105 | + conv6_op = tf.nn.bias_add(conv6, conv6_b) |
| 106 | + |
| 107 | + # 第6个激活层 |
| 108 | + relu6 = tf.nn.relu(conv6_op) |
| 109 | + |
| 110 | + # 第7个卷积层 |
| 111 | + conv7_w = get_weight([CONV_SIZE, CONV_SIZE, CONV6_KERNEL_NUM, CONV7_KERNEL_NUM], regularizer) |
| 112 | + conv7_b = get_bias([CONV7_KERNEL_NUM]) |
| 113 | + conv7 = conv2d(relu6, conv7_w) |
| 114 | + conv7_op = tf.nn.bias_add(conv7, conv7_b) |
| 115 | + |
| 116 | + # 第3个add层 |
| 117 | + add3 = tf.add(conv7_op, add2) |
| 118 | + |
| 119 | + # 第7个激活层 |
| 120 | + relu7 = tf.nn.relu(add3) |
| 121 | + |
| 122 | + # 第8个卷积层 |
| 123 | + conv8_w = get_weight([CONV_SIZE, CONV_SIZE, CONV7_KERNEL_NUM, CONV8_KERNEL_NUM], regularizer) |
| 124 | + conv8_b = get_bias([CONV8_KERNEL_NUM]) |
| 125 | + conv8 = conv2d(relu7, conv8_w) |
| 126 | + conv8_op = tf.nn.bias_add(conv8, conv8_b) |
| 127 | + |
| 128 | + # 第8个激活层 |
| 129 | + relu8 = tf.nn.relu(conv8_op) |
| 130 | + |
| 131 | + # 第9个卷积层 |
| 132 | + conv9_w = get_weight([CONV_SIZE, CONV_SIZE, CONV8_KERNEL_NUM, CONV9_KERNEL_NUM], regularizer) |
| 133 | + conv9_b = get_bias([CONV9_KERNEL_NUM]) |
| 134 | + conv9 = conv2d(relu8, conv9_w) |
| 135 | + conv9_op = tf.nn.bias_add(conv9, conv9_b) |
| 136 | + |
| 137 | + # 第4个add层 |
| 138 | + add4 = tf.add(conv9_op, add3) |
| 139 | + |
| 140 | + # 第9个激活层 |
| 141 | + relu9 = tf.nn.relu(add4) |
| 142 | + |
| 143 | + # 第10个卷积层 |
| 144 | + conv10_w = get_weight([CONV_SIZE, CONV_SIZE, CONV9_KERNEL_NUM, CONV10_KERNEL_NUM], regularizer) |
| 145 | + conv10_b = get_bias([CONV10_KERNEL_NUM]) |
| 146 | + conv10 = conv2d(relu9, conv10_w) |
| 147 | + conv10_op = tf.nn.bias_add(conv10, conv10_b) |
| 148 | + |
| 149 | + # 第10个激活层 |
| 150 | + relu10 = tf.nn.relu(conv10_op) |
| 151 | + |
| 152 | + # 第11个卷积层 |
| 153 | + conv11_w = get_weight([CONV_SIZE, CONV_SIZE, CONV10_KERNEL_NUM, CONV11_KERNEL_NUM], regularizer) |
| 154 | + conv11_b = get_bias([CONV11_KERNEL_NUM]) |
| 155 | + conv11 = conv2d(relu10, conv11_w) |
| 156 | + conv11_op = tf.nn.bias_add(conv11, conv11_b) |
| 157 | + |
| 158 | + # 第5个add层 |
| 159 | + add5 = tf.add(conv11_op, add4) |
| 160 | + |
| 161 | + # 第11个激活层 |
| 162 | + relu11 = tf.nn.relu(add5) |
| 163 | + |
| 164 | + # 第12个卷积层 |
| 165 | + conv12_w = get_weight([CONV_SIZE, CONV_SIZE, CONV11_KERNEL_NUM, CONV12_KERNEL_NUM], regularizer) |
| 166 | + conv12_b = get_bias([CONV12_KERNEL_NUM]) |
| 167 | + conv12 = conv2d(relu11, conv12_w) |
| 168 | + conv12_op = tf.nn.bias_add(conv12, conv12_b) |
| 169 | + |
| 170 | + # 输出结果 |
| 171 | + return conv12_op |
0 commit comments