You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: sdk/ai/azure-ai-agents/CHANGELOG.md
+19Lines changed: 19 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -2,6 +2,25 @@
2
2
3
3
# Release History
4
4
5
+
## 1.1.0b4 (2025-07-11)
6
+
7
+
### Features Added
8
+
9
+
- Added support for MCP tool. For more information, see https://aka.ms/FoundryAgentMCPDoc.
10
+
- New tool_resources parameter added to runs.create method. This parameter represents overridden enabled tool resources that the agent should use to run
11
+
the thread. Default value is None.
12
+
13
+
### Bugs Fixed
14
+
15
+
-`_AgentsClientOperationsMixin` now it is private.
16
+
17
+
### Sample updates
18
+
19
+
- Added a sample showing usage of MCP tool, [`sample_agents_mcp.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_tools/sample_agents_mcp.py).
20
+
- Added a sample showing auto function call for a synchronous client, [`sample_agents_auto_function_call.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_tools/sample_agents_auto_function_call.py)
21
+
- Added a sample showing auto function call for an asynchronous client, [`sample_agents_auto_function_call_async.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_async/sample_agents_auto_function_call_async.py).
# Initialize a Deep Research tool with Bing Connection ID and Deep Research model deployment name
390
393
deep_research_tool = DeepResearchTool(
@@ -413,46 +416,128 @@ with project_client:
413
416
> **Limitation**: The Deep Research tool is currently recommended **only** in non-streaming scenarios.
414
417
> Using it with streaming can work, but it may occasionally time-out and is therefore not yet recommended.
415
418
416
-
### Create Agent with Azure AI Search
419
+
### Create Agent with MCP
417
420
418
-
Azure AI Search is an enterprise search system for high-performance applications. It integrates with Azure OpenAI Service and Azure Machine Learning, offering advanced search technologies like vector search and full-text search. Ideal for knowledge base insights, information discovery, and automation. Creating an Agent with Azure AI Search requires an existing Azure AI Search Index. For more information and setup guides, see [Azure AI Search Tool Guide](https://learn.microsoft.com/azure/ai-services/agents/how-to/tools/azure-ai-search?tabs=azurecli%2Cpython&pivots=overview-azure-ai-search).
421
+
To enable your Agent to connect to a MCP server, use the `McpTool` along with a server URI to a MCP server and a label for that server.
422
+
Note that approval to send data to that server is required by default (but can be set to not required for each run).
Azure AI Search is an enterprise search system for high-performance applications. It integrates with Azure OpenAI Service and Azure Machine Learning, offering advanced search technologies like vector search and full-text search. Ideal for knowledge base insights, information discovery, and automation. Creating an Agent with Azure AI Search requires an existing Azure AI Search Index. For more information and setup guides, see [Azure AI Search Tool Guide](https://learn.microsoft.com/azure/ai-services/agents/how-to/tools/azure-ai-search?tabs=azurecli%2Cpython&pivots=overview-azure-ai-search).
Notice that if `enable_auto_function_calls` is called, the SDK will invoke the functions automatically during `create_and_process` or streaming. If you prefer to execute them manually, refer to [`sample_agents_stream_eventhandler_with_functions.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_streaming/sample_agents_stream_eventhandler_with_functions.py) or
When `enable_auto_function_calls` is called, the SDK will automatically invoke functions during both `create_and_process` and streaming workflows. This simplifies agent logic by handling function execution internally. Furthermore, although function tools and definitions are preserved in Agent service, their function implements are not. Therefore, if your code queries earlier created agents through `update_agents` or `get_agents` function, you MUST also provide the function implementations through `enable_auto_function_calls` to complete auto function callings.
620
+
621
+
- For examples of automatic function calls in action, refer to [`sample_agents_auto_function_call.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_tools/sample_agents_auto_function_call.py) or [`sample_agents_auto_function_call_async.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_async/sample_agents_auto_function_call_async.py).
622
+
- If you prefer to manage function execution manually, refer to [`sample_agents_stream_eventhandler_with_functions.py`](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-agents/samples/agents_streaming/sample_agents_stream_eventhandler_with_functions.py) or
**Note:** The Azure Function may be only used in standard agent setup. Please follow the [instruction](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/infrastructure-setup/41-standard-agent-setup) to deploy an agent, capable of calling Azure Functions.
637
727
638
728
**Summary of required steps:**
639
729
@@ -695,13 +785,6 @@ Below is an example of how to create an Azure Logic App utility tool and registe
text = last_text.text.value.replace('\u3010', '[').replace('\u3011', ']')
1056
+
text = last_text.text.value.replace("\u3010", "[").replace("\u3011", "]")
972
1057
print(f"{msg.role}: {text}")
973
1058
```
974
1059
@@ -1481,6 +1566,14 @@ from azure.ai.agents.telemetry import enable_telemetry
1481
1566
1482
1567
enable_telemetry(destination=sys.stdout)
1483
1568
```
1569
+
1570
+
### Enabling content recording
1571
+
Content recording controles whether message contents and tool call related details, such as parameters and return values, are captured with the traces.
1572
+
To enable content recording set the `AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED` environment variable value to `true`. If the environment variable is not set, then the value will default to `false`.
1573
+
1574
+
1575
+
**Important:** The `AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED` environment variable only controls content recording for built-in agent traces. When you use the `@trace_function` decorator on your own functions, all parameters and return values are always traced.
1576
+
1484
1577
### How to trace your own functions
1485
1578
1486
1579
The decorator `trace_function` is provided for tracing your own function calls using OpenTelemetry. By default the function name is used as the name for the span. Alternatively you can provide the name for the span as a parameter to the decorator.
@@ -1496,6 +1589,44 @@ Object types are omitted, and the corresponding parameter is not traced.
1496
1589
1497
1590
The parameters are recorded in attributes `code.function.parameter.<parameter_name>` and the return value is recorder in attribute `code.function.return.value`
1498
1591
1592
+
### Adding custom attributes to spans
1593
+
1594
+
Define your own span processor which adds your custom attributes:
0 commit comments