@@ -346,8 +346,8 @@ def minimax_tree_search(begin_node, policy, max_depth):
346
346
# depth is < max_depth
347
347
siblings = begin_node .get_siblings ()
348
348
# The stochastic node value is the expected values of siblings
349
- node_value = (begin_node .pC * F (siblings [0 ], policy , max_depth )
350
- + (1 - begin_node .pC ) * F (siblings [1 ], policy , max_depth ))
349
+ node_value = (begin_node .pC * minimax_tree_search (siblings [0 ], policy , max_depth )
350
+ + (1 - begin_node .pC ) * minimax_tree_search (siblings [1 ], policy , max_depth ))
351
351
return node_value
352
352
else : # determinist node
353
353
if begin_node .depth == max_depth :
@@ -358,15 +358,15 @@ def minimax_tree_search(begin_node, policy, max_depth):
358
358
# this returns the two max expected values, for choice C or D,
359
359
# as a tuple
360
360
return (
361
- F (siblings [0 ], policy , max_depth ) + begin_node .get_value (),
362
- F (siblings [1 ], policy , max_depth ) + begin_node .get_value ()
361
+ minimax_tree_search (siblings [0 ], policy , max_depth ) + begin_node .get_value (),
362
+ minimax_tree_search (siblings [1 ], policy , max_depth ) + begin_node .get_value ()
363
363
)
364
364
elif begin_node .depth < max_depth :
365
365
siblings = begin_node .get_siblings (policy )
366
366
# the determinist node value is the max of both siblings values
367
367
# + the score of the outcome of the node
368
- a = F (siblings [0 ], policy , max_depth )
369
- b = F (siblings [1 ], policy , max_depth )
368
+ a = minimax_tree_search (siblings [0 ], policy , max_depth )
369
+ b = minimax_tree_search (siblings [1 ], policy , max_depth )
370
370
node_value = max (a , b ) + begin_node .get_value ()
371
371
return node_value
372
372
0 commit comments