From 84f965e255fbf72ca8a3027d34c2c6005b16b4ba Mon Sep 17 00:00:00 2001
From: Rushi-24 <2021.yeole.rushikesh@ves.ac.in>
Date: Mon, 7 Oct 2024 20:51:30 +0530
Subject: [PATCH] Added feature importance of Age and Estimated salary via bar
graph to Random Forest
---
Code/Day 34 Random_Forest.md | 84 ++++++++++++++++--------------------
1 file changed, 37 insertions(+), 47 deletions(-)
diff --git a/Code/Day 34 Random_Forest.md b/Code/Day 34 Random_Forest.md
index 7b55286..a24a8b7 100644
--- a/Code/Day 34 Random_Forest.md
+++ b/Code/Day 34 Random_Forest.md
@@ -1,85 +1,75 @@
-# Random Forests
-
-
-
-
-
-### Importing the libraries
-```python
+# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
-```
-### Importing the dataset
-```python
+# Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
-X = dataset.iloc[:, [2, 3]].values
-y = dataset.iloc[:, 4].values
-```
-### Splitting the dataset into the Training set and Test set
-```python
-from sklearn.cross_validation import train_test_split
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
-```
+X = dataset.iloc[:, [2, 3]].values # Selecting Age and Estimated Salary columns
+y = dataset.iloc[:, 4].values # Selecting the Purchased column
+
+# Splitting the dataset into the Training set and Test set
+from sklearn.model_selection import train_test_split
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
-### Feature Scaling
-```python
+# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
-```
-### Fitting Random Forest to the Training set
-```python
+
+# Fitting Random Forest to the Training set
from sklearn.ensemble import RandomForestClassifier
-classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
+classifier = RandomForestClassifier(n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(X_train, y_train)
-```
-### Predicting the Test set results
-```python
+
+# Predicting the Test set results
y_pred = classifier.predict(X_test)
-```
-### Making the Confusion Matrix
-```python
+
+# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
-```
-### Visualising the Training set results
-```python
+
+# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
-X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
- np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
+X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
+ np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
- alpha = 0.75, cmap = ListedColormap(('red', 'green')))
+ alpha=0.75, cmap=ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
- c = ListedColormap(('red', 'green'))(i), label = j)
+ c=ListedColormap(('red', 'green'))(i), label=j)
plt.title('Random Forest Classification (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
-```
-### Visualising the Test set results
-```python
-from matplotlib.colors import ListedColormap
+
+# Visualising the Test set results
X_set, y_set = X_test, y_test
-X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
- np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
+X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
+ np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
- alpha = 0.75, cmap = ListedColormap(('red', 'green')))
+ alpha=0.75, cmap=ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
- c = ListedColormap(('red', 'green'))(i), label = j)
+ c=ListedColormap(('red', 'green'))(i), label=j)
plt.title('Random Forest Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
-```
+
+# Visualizing Feature Importance
+importances = classifier.feature_importances_
+features = ['Age', 'Estimated Salary'] # Naming the features
+plt.figure(figsize=(8,6))
+plt.barh(features, importances, color='skyblue')
+plt.xlabel('Importance')
+plt.title('Feature Importance in Random Forest Model')
+plt.show()