|
35 | 35 | from sklearn.pipeline import make_pipeline
|
36 | 36 | from sklearn.preprocessing import StandardScaler
|
37 | 37 | from sklearn.linear_model import Ridge
|
38 |
| -from sklearn.compose import ColumnTransformer |
| 38 | +from sklearn.compose import make_column_transformer |
39 | 39 |
|
40 | 40 | data_train, data_test, target_train, target_test = train_test_split(
|
41 | 41 | data, target, test_size=0.2, random_state=0
|
42 | 42 | )
|
43 | 43 | geo_columns = ["Latitude", "Longitude"]
|
44 | 44 | model_drop_geo = make_pipeline(
|
45 |
| - ColumnTransformer( |
46 |
| - [ |
47 |
| - ("geo", "drop", geo_columns), |
48 |
| - ], |
49 |
| - remainder="passthrough", |
50 |
| - ), |
| 45 | + make_column_transformer(("drop", geo_columns), remainder="passthrough"), |
51 | 46 | StandardScaler(),
|
52 | 47 | Ridge(alpha=1e-12),
|
53 | 48 | )
|
|
129 | 124 | from sklearn.pipeline import make_pipeline
|
130 | 125 |
|
131 | 126 | model_cluster_geo = make_pipeline(
|
132 |
| - ColumnTransformer( |
133 |
| - [ |
134 |
| - ("geo", KMeans(n_clusters=100), geo_columns), |
135 |
| - ], |
| 127 | + make_column_transformer( |
| 128 | + (KMeans(n_clusters=100), geo_columns), |
136 | 129 | remainder="passthrough",
|
137 | 130 | ),
|
138 | 131 | StandardScaler(),
|
|
158 | 151 | # %%
|
159 | 152 | from sklearn.model_selection import GridSearchCV
|
160 | 153 |
|
161 |
| -param_name = "columntransformer__geo__n_clusters" |
| 154 | +param_name = "columntransformer__kmeans__n_clusters" |
162 | 155 | param_grid = {param_name: [10, 30, 100, 300, 1_000, 3_000]}
|
163 | 156 | grid_search = GridSearchCV(
|
164 | 157 | model_cluster_geo, param_grid=param_grid, scoring="neg_mean_absolute_error"
|
|
0 commit comments