Skip to content

Commit cee6fd1

Browse files
remove transform from tour nb
1 parent fa33ea8 commit cee6fd1

File tree

1 file changed

+0
-116
lines changed

1 file changed

+0
-116
lines changed

nbs/000_tour.ipynb

Lines changed: 0 additions & 116 deletions
Original file line numberDiff line numberDiff line change
@@ -563,122 +563,6 @@
563563
"1 + L(2,3,4)"
564564
]
565565
},
566-
{
567-
"cell_type": "markdown",
568-
"metadata": {},
569-
"source": [
570-
"### Transforms"
571-
]
572-
},
573-
{
574-
"cell_type": "markdown",
575-
"metadata": {},
576-
"source": [
577-
"A `Transform` is the main building block of the fastai data pipelines. In the most general terms a transform can be any function you want to apply to your data, however the `Transform` class provides several mechanisms that make the process of building them easy and flexible (see the docs for information about each of these):\n",
578-
"\n",
579-
"- Type dispatch\n",
580-
"- Dispatch over tuples\n",
581-
"- Reversability\n",
582-
"- Type propagation\n",
583-
"- Preprocessing\n",
584-
"- Filtering based on the dataset type\n",
585-
"- Ordering\n",
586-
"- Appending new behavior with decorators\n",
587-
"\n",
588-
"`Transform` looks for three special methods, <code>encodes</code>, <code>decodes</code>, and <code>setups</code>, which provide the implementation for [`__call__`](https://www.python-course.eu/python3_magic_methods.php), `decode`, and `setup` respectively. For instance:"
589-
]
590-
},
591-
{
592-
"cell_type": "code",
593-
"execution_count": null,
594-
"metadata": {},
595-
"outputs": [
596-
{
597-
"data": {
598-
"text/plain": [
599-
"2"
600-
]
601-
},
602-
"execution_count": null,
603-
"metadata": {},
604-
"output_type": "execute_result"
605-
}
606-
],
607-
"source": [
608-
"class A(Transform):\n",
609-
" def encodes(self, x): return x+1\n",
610-
"\n",
611-
"A()(1)"
612-
]
613-
},
614-
{
615-
"cell_type": "markdown",
616-
"metadata": {},
617-
"source": [
618-
"For simple transforms like this, you can also use `Transform` as a decorator:"
619-
]
620-
},
621-
{
622-
"cell_type": "code",
623-
"execution_count": null,
624-
"metadata": {},
625-
"outputs": [
626-
{
627-
"data": {
628-
"text/plain": [
629-
"2"
630-
]
631-
},
632-
"execution_count": null,
633-
"metadata": {},
634-
"output_type": "execute_result"
635-
}
636-
],
637-
"source": [
638-
"@Transform\n",
639-
"def f(x): return x+1\n",
640-
"\n",
641-
"f(1)"
642-
]
643-
},
644-
{
645-
"cell_type": "markdown",
646-
"metadata": {},
647-
"source": [
648-
"Transforms can be composed into a `Pipeline`:"
649-
]
650-
},
651-
{
652-
"cell_type": "code",
653-
"execution_count": null,
654-
"metadata": {},
655-
"outputs": [
656-
{
657-
"data": {
658-
"text/plain": [
659-
"2.0"
660-
]
661-
},
662-
"execution_count": null,
663-
"metadata": {},
664-
"output_type": "execute_result"
665-
}
666-
],
667-
"source": [
668-
"@Transform\n",
669-
"def g(x): return x/2\n",
670-
"\n",
671-
"pipe = Pipeline([f,g])\n",
672-
"pipe(3)"
673-
]
674-
},
675-
{
676-
"cell_type": "markdown",
677-
"metadata": {},
678-
"source": [
679-
"The power of `Transform` and `Pipeline` is best understood by seeing how they're used to create a complete data processing pipeline. This is explained in [chapter 11](https://github.com/fastai/fastbook/blob/master/11_midlevel_data.ipynb) of the [fastai book](https://www.amazon.com/Deep-Learning-Coders-fastai-PyTorch/dp/1492045527), which is [available for free](https://github.com/fastai/fastbook) in Jupyter Notebook format."
680-
]
681-
},
682566
{
683567
"cell_type": "code",
684568
"execution_count": null,

0 commit comments

Comments
 (0)